

2-2 Properties of Quadratic Functions in Standard Form

This shows that parabolas are symmetric curves. The **axis of symmetry** is the line through the vertex of a parabola that divides the parabola into two congruent halves.

2-2 Properties of Quadratic Functions in Standard Form

Another useful form of writing quadratic functions is the *standard form*. The **standard form** of a quadratic function is $f(x) = ax^2 + bx + c$, where $a \neq 0$.

The coefficients a, b, and c can show properties of the graph of the function. You can determine these properties by expanding the vertex form.

Copyright © by Holt Mc Dougal. All Rights Reserved

 $f(x)=a(x-h)^2+k$

2-2 Properties of Quadratic Functions in Standard Form
Example 2A: Graphing Quadratic Functions in Standard Form
Consider the function $f(x) = 2x^2 - 4x + 5$.
a. Determine whether the graph opens upward or downward. It opens
b. Find the axis of symmetry.
The axis of symmetry is

