

Warm Up Lesson Presentation Lesson Quiz

Holt McDougal Geometry

Warm Up Identify each angle pair.

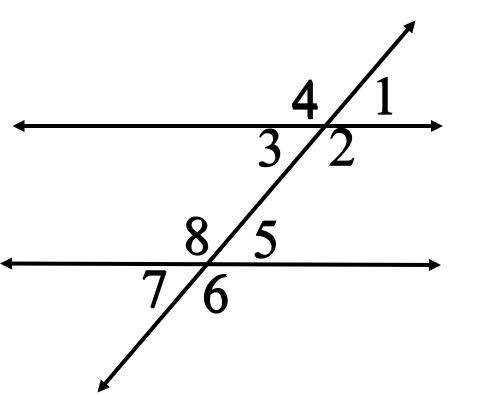
- **1.** $\angle 1$ and $\angle 3$ corr. $\angle s$
- **2.** $\angle 3$ and $\angle 6$ alt. int. $\angle s$
- **3.** $\angle 4$ and $\angle 5$ alt. ext. $\angle s$
- **4.** $\angle 6$ and $\angle 7$ same-side int $\angle s$

8

5

Prove and use theorems about the angles formed by parallel lines and a transversal.

Holt McDougal Geometry



Same Side Interior Angles:

 $\angle 2$ and $\angle 5$

 $\angle 3$ and $\angle 8$

Corresponding Angles: $\angle 1$ and $\angle 5$ $\angle 2$ and $\angle 6$ $\angle 3$ and $\angle 7$

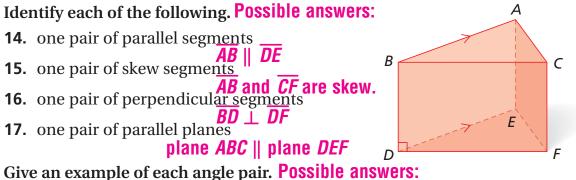
Alternate Interior Angles: $\angle 2$ and $\angle 8$ $\angle 3$ and $\angle 5$

Alternate Exterior Angles:

 $\angle 1$ and $\angle 7$ $\angle 4$ and $\angle 6$

 $\angle 4$ and $\angle 8$

PRACTICE AND PROBLEM SOLVING

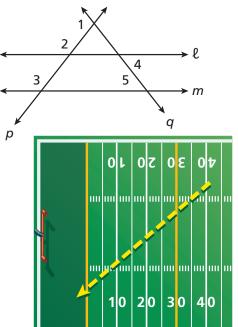


18. same-side interior angles $\angle 2$ and $\angle 6$

- **19.** alternate exterior angles $\angle 1$ and $\angle 8$
- **20.** corresponding angles $\angle 1$ and $\angle 6$
- **21.** alternate interior angles $\angle 2$ and $\angle 5$

Identify the transversal and classify each angle pair.

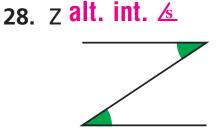
- **22.** ∠2 and ∠3 **transv.:** *p*; corr. *▲*
- **23.** $\angle 4$ and $\angle 5$ transv.: *q*; alt. int. \measuredangle
- **24.** $\angle 2$ and $\angle 4$ **transv.:** ℓ ; alt. ext. \measuredangle
- **25.** $\angle 1$ and $\angle 2$ transv.: *p*; same-side int. $\angle 4$
- 26. Sports A football player runs across the 30-yard line at an angle. He continues in a straight line and crosses the goal line at the same angle. Describe two parallel lines and a transversal in the diagram. The 30-yard line and goal line are ||, and the path of the runner is the transv.

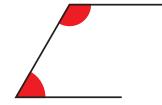


5/8

Name the type of angle pair shown in each letter. **Possible answers**:

27. F **Corr.** ⁄a

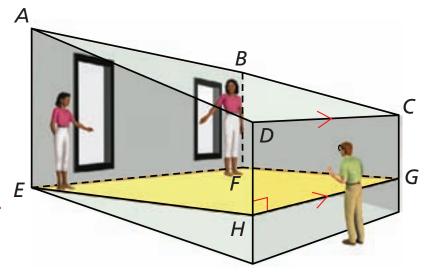




Entertainment Use the following information for Exercises 30–32.

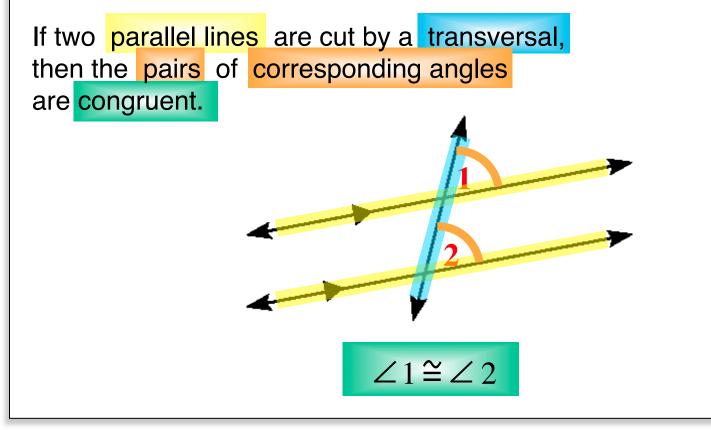
In an Ames room, the floor is tilted and the back wall is closer to the front wall on one side.

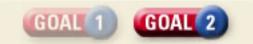
- **30.** Name a pair of parallel segments in the diagram. *CD* || *GH*
- **31.** Name a pair of skew segments in the diagram. **Possible answer:** *CD* and *FG*
- **32.** Name a pair of perpendicular segments in the diagram. $\overline{DH} \perp \overline{GH}$



POSTULATE

POSTULATE 15 Corresponding Angles Postulate





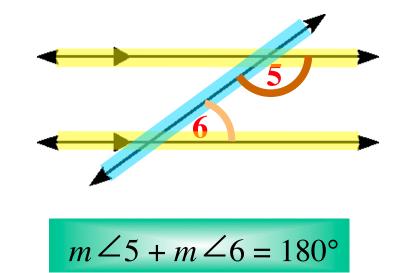
THEOREM 3.4 Alternate Interior Angles

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.



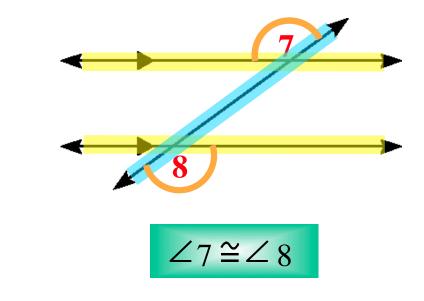
THEOREM 3.5 Consecutive Interior Angles

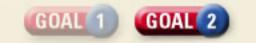
If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.



THEOREM 3.6 Alternate Exterior Angles

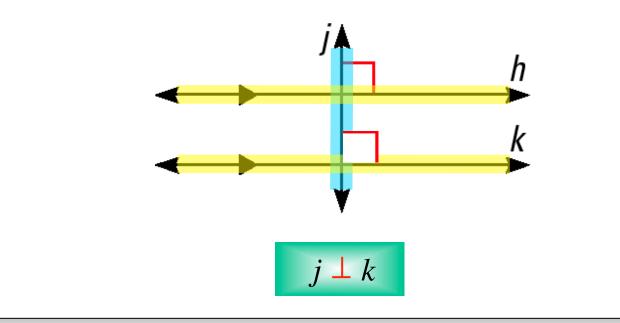
If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.





THEOREM 3.7 Perpendicular Transversal

If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

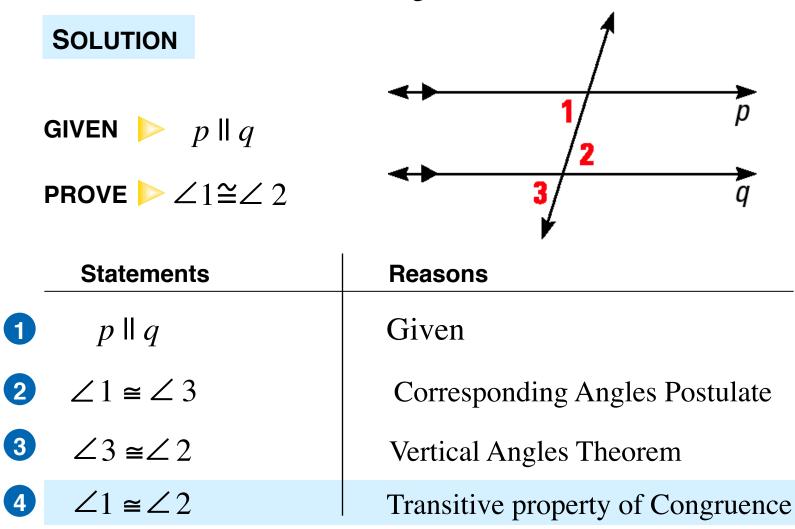


Parallel Lines and Transversals

3.3

EXAMPLE Proving the Alternate Interior Angles Theorem

Prove the Alternate Interior Angles Theorem.



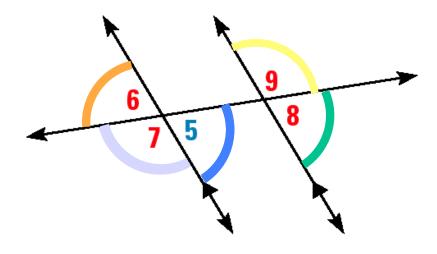
Parallel Lines and Transversals

3.3

GOAL 1 GOAL 2

EXAMPLE Using Properties of Parallel Lines

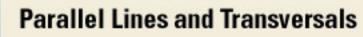
Given that $m \angle 5 = 65^{\circ}$, find each measure. Tell which postulate or theorem you use.



SOLUTION

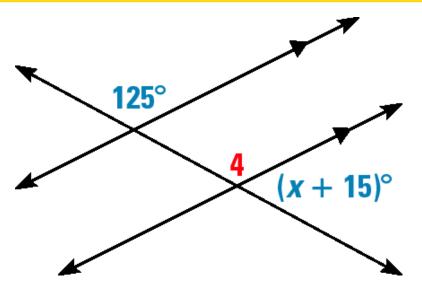
3.3

$$m \angle 6 = m \angle 5 = 65^{\circ}$$
Vertical Angles Theorem $m \angle 7 = 180^{\circ} - m \angle 5 = 115^{\circ}$ Linear Pair Postulate $m \angle 8 = m \angle 5 = 65^{\circ}$ Corresponding Angles Postulate $m \angle 9 = m \angle 7 = 115^{\circ}$ Alternate Exterior Angles Theorem



EXAMPLE Using Properties of Parallel Lines

Use properties of parallel lines to find the value of x.



SOLUTION

$$m \angle 4 = 125^{\circ}$$

 $m \angle 4 + (x + 15)^{\circ} = 180^{\circ}$

 $125^{\circ} + (x + 15)^{\circ} = 180^{\circ}$

Corresponding Angles Postulate

Linear Pair Postulate

Substitute.

Subtract.

Parallel Lines and Transversals

 $x = 40^{\circ}$

3-2 Angles Formed by Parallel Lines and Transversals

Postulate 3-2-1 Corresponding Angles Postulate		
THEOREM	HYPOTHESIS	CONCLUSION
If two parallel lines are cut by a transversal, then the pairs of correspondin angles are congruent.		$\begin{array}{c} \angle 1 \cong \angle 3 \\ \angle 2 \cong \angle 4 \\ \angle 5 \cong \angle 7 \\ \angle 6 \cong \angle 8 \end{array}$

Holt McDougal Geometry

Angles Formed by Parallel Lines and Transversals

Example 1: Using the Corresponding Angles Postulate

Find each angle measure. **A.** m∠*ECF* В x = 70 Corr. $\angle s$ Post. $m \angle ECF = 70^{\circ}$ **B.** m∠*DCE* 5x = 4x + 22 Corr. $\angle s$ Post. Subtract 4x from both sides. x = 22 $m \angle DCE = 5x$ = 5(22) Substitute 22 for x.

 $= 110^{\circ}$

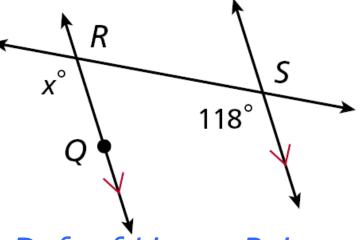
 $(4x + 22)^{\circ}$ (5*x*)

Holt McDougal Geometry

Check It Out! Example 1

Find m∠*QRS*.

x = 118 Corr. $\angle s$ Post.



 $m \angle QRS + x = 180^{\circ}$

Def. of Linear Pair

 $m \angle QRS = 180^{\circ} - x$

Subtract x from both sides.

= 180° - 118° *Substitute 118° for x.*

= 62°

Helpful Hint

If a transversal is perpendicular to two parallel lines, all eight angles are congruent.

Holt McDougal Geometry

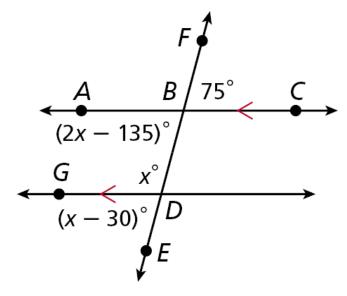
Remember that postulates are statements that are accepted without proof.

Since the Corresponding Angles Postulate is given as a postulate, it can be used to prove the next three theorems.

3-2 Angles Formed by Parallel Lines and Transversals

Example 2: Finding Angle Measures

- Find each angle measure.
- A. m∠*EDG*
 - $m \angle EDG = 75^{\circ} Alt. Ext. \angle s Thm.$

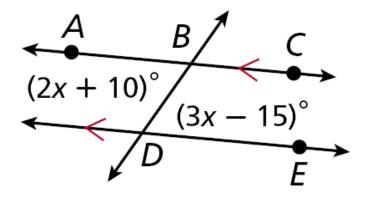


B. m∠BDG

 $x - 30^\circ = 75^\circ$ Alt. Ext. $\angle s$ Thm. x = 105 Add 30 to both sides. $m \angle BDG = 105^\circ$

Check It Out! Example 2

Find m∠ABD.



 $2x + 10^{\circ} = 3x - 15^{\circ}$ *Alt. Int.* $\angle s$ *Thm.*

x = 25Subtract 2x and add 15 to
both sides.

 $m \angle ABD = 2(25) + 10 = 60^{\circ}$ Substitute 25 for x.

Holt McDougal Geometry

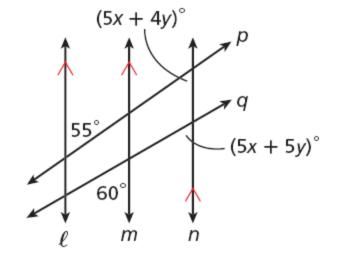
3-2 Angles Formed by Parallel Lines and Transversals

Example 3: Music Application

Find x and y in the diagram.

By the Alternate Interior Angles Theorem, $(5x + 4y)^\circ = 55^\circ$.

By the Corresponding Angles Postulate, $(5x + 5y)^\circ = 60^\circ$.



5x + 5y = 60-(5x + 4y = 55) y = 5 5x + 5(5) = 60

Subtract the first equation from the second equation.

Substitute 5 for y in 5x + 5y = 60. Simplify and solve for x.

$$x = 7, y = 5$$

Holt McDougal Geometry

Check It Out! Example 3

Find the measures of the acute angles in the diagram.

By the Alternate Exterior Angles Theorem, $(25x + 5y)^{\circ} = 125^{\circ}$.

By the Corresponding Angles Postulate, $(25x + 4y)^{\circ} = 120^{\circ}$

 $(25x + 5y)^{\circ}$ $(25x + 4y)^{\circ}$ 120°

ass strings Treble strings

An acute angle will be 180° – 125°, or 55°.

The other acute angle will be 180° – 120°, or 60°.

HW p. 159 #1-19

Holt McDougal Geometry

3-2 Angles Formed by Parallel Lines and Transversals

Lesson Quiz

State the theorem or postulate that is related to the measures of the angles in each pair. Then find the unknown angle measures.

1. $m \angle 1 = 120^{\circ}, m \angle 2 = (60x)^{\circ}$ Alt. Ext. $\angle s$ Thm.; $m \angle 2 = 120^{\circ}$

2. m∠2 =
$$(75x - 30)^{\circ}$$
,
m∠3 = $(30x + 60)^{\circ}$

Corr. \angle s Post.; m $\angle 2 = 120^{\circ}$, m $\angle 3 = 120^{\circ}$

 $\begin{array}{c} 1 \\ 4 \\ \hline \\ 3 \\ \end{array}$

3. m∠3 = (50x + 20)°, m∠4= (100x - 80)°
Alt. Int. ∠s Thm.; m∠3 = 120°, m∠4 = 120°
4. m∠3 = (45x + 30)°, m∠5 = (25x + 10)°
Same-Side Int. ∠s Thm.; m∠3 = 120°, m∠5 = 60°