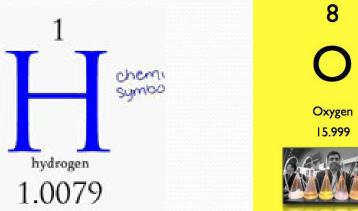

Ch 5 Atomic Structure and the Periodic Table

5.1 Atoms are thesmallest form of elements

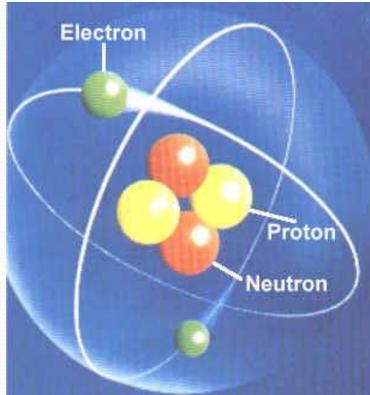


All matter is made of atoms

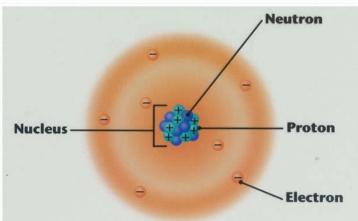
- Same type of atoms = element
- There are approximately 100 elements known today


	1																	18
[1]			-Atom	nic nu	mber		_									2
1	H			6						Meta				14	15	14	17	He
	1.008	2		C -	- Syml	bol				Semi	metal		13 5	14	15	16	17	4.003
	3	4	1	2.01				Nonmetal						6	ar -	å	9	10
2	L1	Be			-Atom	ic we	ight						В	С	N	0	F	Ne
-	6.941 11	9.012			Atom	10 400	gin						10.81	12.01	14.01	16.00 16	19.00	20.18 18
3	No	Мg												Si	P	ŝ	Cl	
'	Na	mg	3	4	5	6	7	8	9	10	11	12	Al	31 28.09	30.97		35.45	Ar
ł	22.99	24.31	21	22	23 1	24	25	26	27	28	29	30	26.98 31	28.09	30.97	32.07 34	35.45	39.95 36
4	ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
7	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
ł	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	v	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
´	85.47	87.62	88.91	91.22	92.91	95.94	98.91	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
1	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209.0	210.0	222.0
	87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
L	223.0	226.0	262.1	261.1	262.1	263.1	264.1	265.1	268	269	272	277		289		289		293
		<u>ا</u>								_						_	_	
			57	58	59	60	61	62	63		-		67	68				
		6	_															
			138.			<u>9 144.</u> 92		9 150.4	<u> 152.</u> 95			9 162.	5 164. 99					
		-	- YI 👗 👘				Ň									-		
		/	A					_		n Cn								(c)1998
			227.	.0 232.	0 231.	0 238.	0 237.	0 244.	1 243.	.1 247	.1 247.	.1 251.	.1 252	.0 257.	1 258	.1 259	. К	omor Paul

- Each element has its own symbol & properties
 - Hydrogen is the most abundant in the universe
 - Oxygen is the most abundant in the Earth's crust

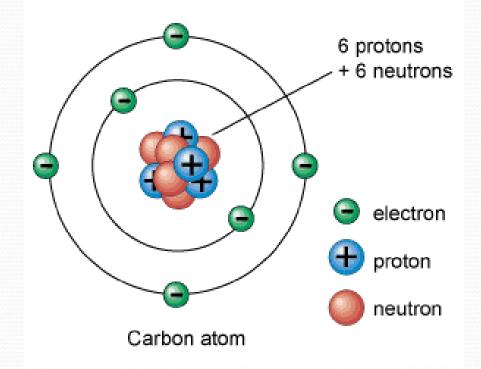

John Dalton is famous for studies involving atoms (early 1800s)

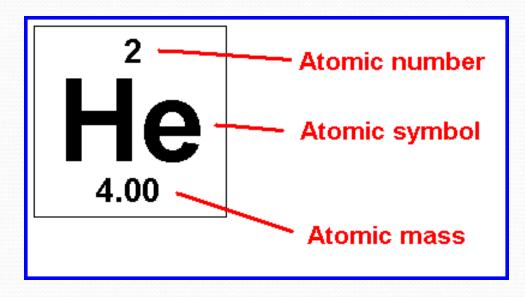
His work helped contribute To the modern-day atomic Theory.

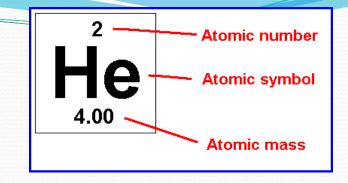


Each element is made of a different atom

- Atoms are made of 3 different particles (subatomic particles)
 - Protons, + charge
 - Neutrons, o charge (neutral)
 - Electrons, charge

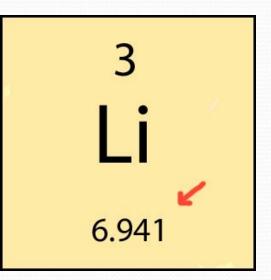

- <u>Nucleus</u>—center of the atom; contains the protons
 & neutrons
- <u>Electron cloud</u> (or energy levels)—contains the electrons which orbit the nucleus
 - Electrons are 2000x smaller than the protons & neutrons


*Mass of electrons is considered to be neglegible

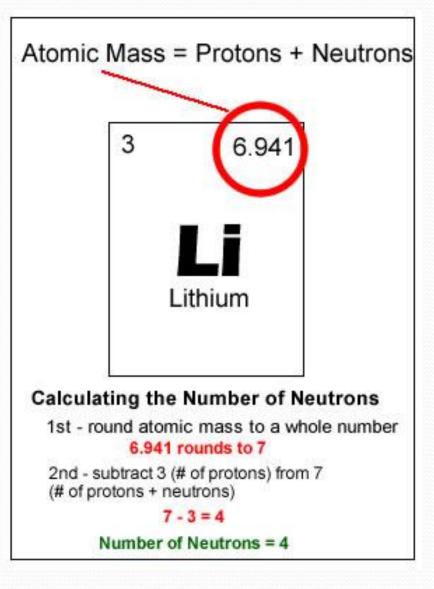

** # Energy Levels—>Period or Row # (# of rings to draw around nucleus)

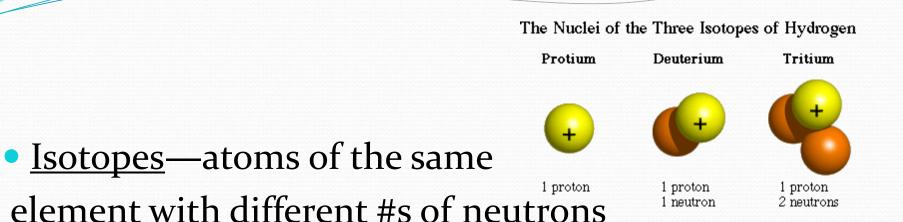
Carbon has 2 energy levels

<u>Atomic #</u>--number of protons and total # of electrons in an atom

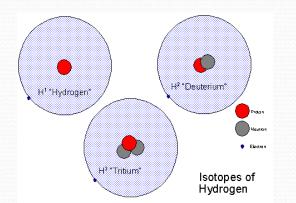

• <u>Atomic mass --</u>

of protons & neutrons combined


- Avogrado's # = 6.022 X 10 to the 23rd power
- 7 grams of Lithium would


have Avogrado's # of atoms in it

• This is also considered to be 1 mol

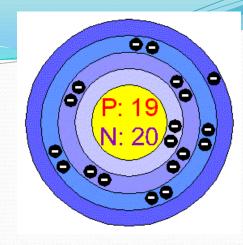


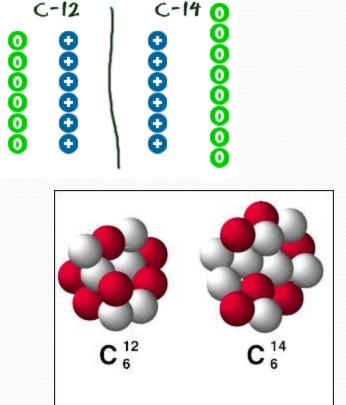
Neutrons = Atomic mass - atomic

- Atomic mass # on periodic table is the ave. # of all isotopes
- An isotope is written with a numeral after the name; the numeral represents the atomic mass

Examples of

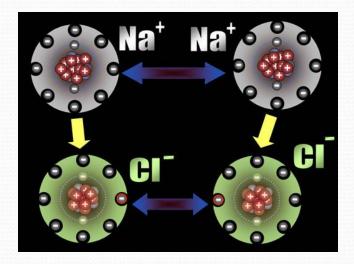
Isotopes

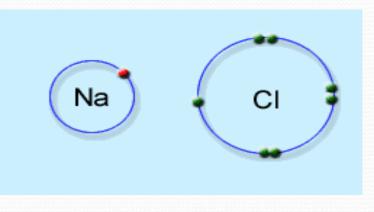

Potassium Bohr Model

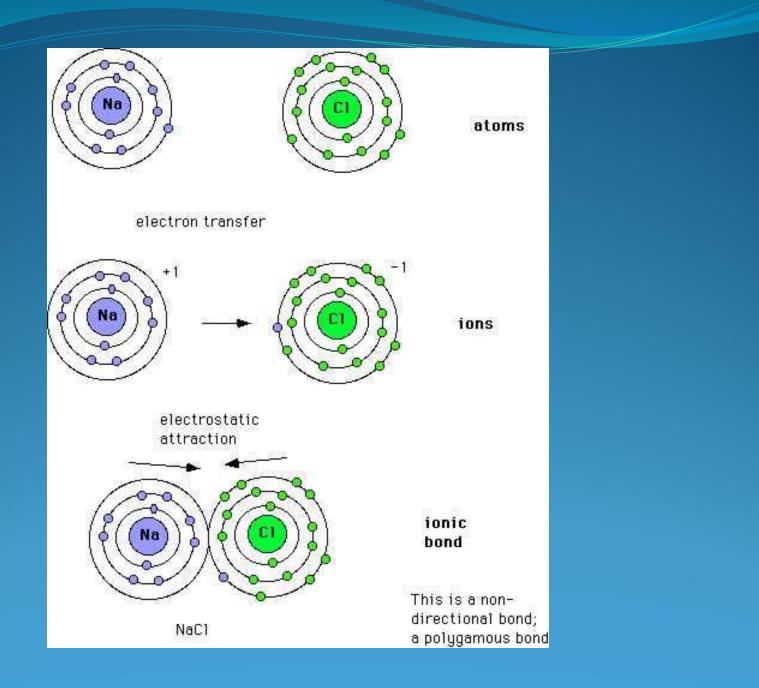

Potassium 39= 20 neutrons 39 is the atomic mass atomic mass – atomic #

39 - 19 = 20

Potassium 41 = 22 neutrons

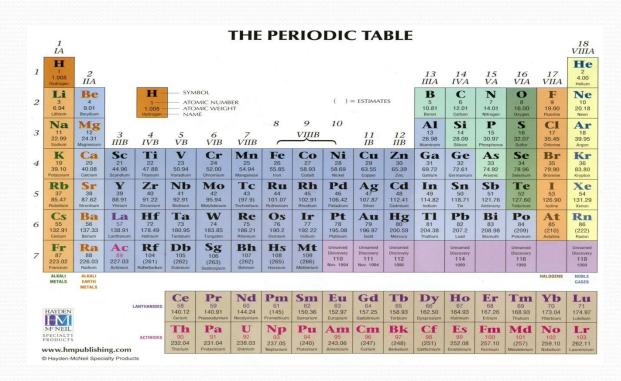

Potassium 42 = 23 neutrons





Atoms form ions

- Ions form when atoms gain or lose electrons
- Electrons have a negative charge
 - Gaining = negative ions (anions)
 - Losing = positive ions (cations)

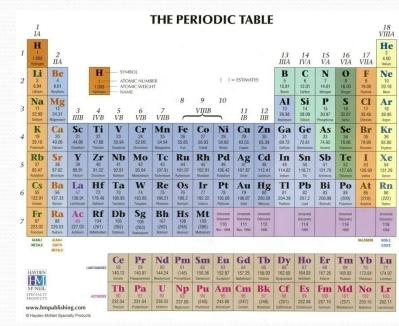


Families & Ions/Oxidation #s

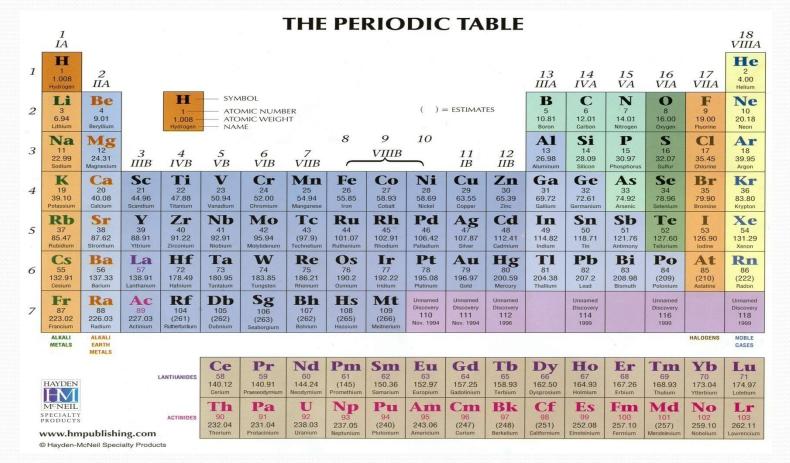
Family 1 = +1Family 2 = +2Family 13 = +3Family 14 = + -4Family 15 = -3Family 16 = -2Family 17 = -1Family 18 = 0

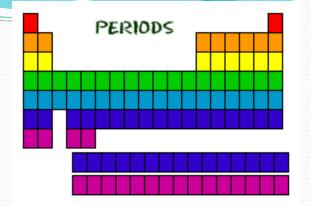
Draw Concept Map...

					<u>г_</u> Я		Ta	.ก.ก.	_							
1A			T	Cirt.	യര	16	Ga	ЮU	6							8A
1																2
H											. .					He
1.008 2A											3A	4 A	5A	6A		4.003
3 4 Li Da											5 B	6 C	7 N	8 0	9 F	10 No
Li Be 6.941 9.012											D 10.81	~	14.01	16.00	_	Ne 20.18
11 12											13	12.01 14	14.01	16.00	19.00	18
Na Mg							8B				ĂĨ	Si	P	Ŝ	ĉi	Ar
23.00 24.31	3B	4B	5B	6B	7B				1B	2B	26.98		_	32.06	35 45	39.95
19 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Ca	Sc	Ti	Y	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10 40.08	44.96 4	17.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37 38	39	40	41	42	43	- 44	45	46	47	48	49	50	51	52	53	54
Rb Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pđ	Ag	Cđ	In	Sn	Sb	Te	Ι	Xe
		1.22		95.94	(98)	101.1	102.9		107.9	112.4	114.8		121.8		126.9	
55 56	57	72	73	74	75	76	77	78	79	80	81 T1	82 D1	83	84 D	85	86
Cs Ba	La	Hf	Ta	W.	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132.9 137.3 87 88	138.91 89	.78.5 104	180.9	183.9	186.2 107	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
Fr Ra		Rf	Ha	106 Unh			109 Une									
	227.0((262)	(263)			(267)									
100010000	ee non	2017	10007	12037	10005		12017									
			58	59	60	61	62	63	64	65	66	67	68	69	70	71
L	anthan	ides	Če	Řř.	Ňđ	Pm	Sm	Ĕũ	Ğd	ŤĎ	Ďy	Ho	Ĕr	Τm	Ϋ́b	Lu
			140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5					175.0
			90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Actin	ides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)


5.2 The periodic table organizes the atoms of the elements by properties & atomic

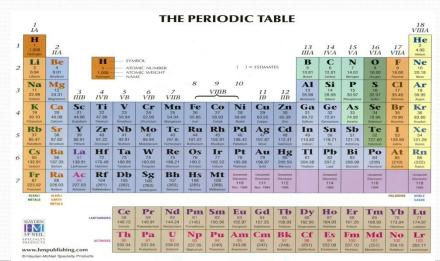
							ТНЕ	PEI	RIO	DIC	С ТА	BLE						
	1 IA																	18 VIIIA
1	1 1.008 Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	He 2 4.00 Helium
2	Li 3 6.94 Lithium	Be 4 9.01 Beryllium		H		IBOL MIC NUMB MIC WEIGH ME				()=	= estimat	ËS	B 5 10.81 Boron	C 6 12.01 Carbon	N 7 14.01 Nitrogen	0 8 16.00 Oxygen	F 9 19.00 Fluorine	Ne 10 20.18 Neon
3	Na 11 22.99 Sodium	Mg 12 24.31 Magnesium	3 IIIB	$_{IVB}^{4}$	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	Al 13 26.98 Aluminum	Si 14 28.09 Silicon	P 15 30.97 Phosphorus	S 16 32.07 Sulfur	C1 17 35.45 Chlorine	Ar 18 39.95 Argon
4	K 19 39.10 Potassium	Ca 20 40.08 Calcium	Sc 21 44.96 Scandium	Ti 22 47.88 Titanium	23 50.94 Vanadium	Cr 24 52.00 Chromium	Mn 25 54.94 Manganese	Fe 26 55.85 Iron	27 58.93 Cobalt	Ni 28 58.69 Nickel	C11 29 63.55 Copper	Zn 30 65.39 Zinc	Ga 31 69.72 Gallium	Ge 32 72.61 Germanium	As 33 74.92 Arsenic	Se 34 78.96 Selenium	Br 35 79.90 Bromine	Kr 36 83.80 Krypton
5	Rb 37 85.47 Rubidium	Sr 38 87.62 Strontium	Y 39 88.91 Yttrium	Zr 40 91.22 Zirconium	Nb 41 92.91 Niobium	Mo 42 95.94 Molybdenum	Tc 43 (97.9) Technetium	Ru 44 101.07 Ruthenium	Rh 45 102.91 Rhodium	Pd 46 106.42 Palladium	Ag 47 107.87 Silver	Cd 48 112.41 Cadmium	In 49 114.82 Indium	Sn 50 118.71 Tin	Sb 51 121.76 Antimony	Te 52 127.60 Tellurium	I 53 126.90 Iodine	Xe 54 131.29 Xenon
6	CS 55 132.91 Cesium	Ba 56 137.33 Barium	La 57 138.91 Lanthanum	Hf 72 178.49 Hafnium	Ta 73 180.95 Tantalum	74 183.85 Tungsten	Re 75 186.21 Rhenium	OS 76 190.2 Osmium	77 192.22 Iridium	Pt 78 195.08 Platinum	Au 79 196.97 Gold	Hg 80 200.59 Mercury	T1 81 204.38 Thallium	Pb 82 207.2 Lead	Bi 83 208.98 Bismuth	Po 84 (209) Polonium	At 85 (210) Astatine	Rn 86 (222) Radon
7	87 223.02 Francium	Ra 88 226.03 Radium	Ac 89 227.03 Actinium	Rf 104 (261) Rutherfordium	Db 105 (262) Dubnium	Sg 106 (263) Seaborgium	Bh 107 (262) Bohrium	HS 108 (265) Hassium	Mt 109 (266) Meitnerium	Unnamed Discovery 110 Nov. 1994	Unnamed Discovery 111 Nov. 1994	Unnamed Discovery 112 1996		Unnamed Discovery 114 1999		Unnamed Discovery 116 1999		Unnamed Discovery 118 1999
	ALKALI METALS	ALKALI EARTH METALS						-							-		HALOGENS	NOBLE GASES
	HAYDEN		L	ANTHANIDES	Ce 58 140.12 Cerium	59 140.91 Praeseodymium	Nd 60 144.24 Neodymium	Pm 61 (145) Promethium	Sm 62 150.36 Samarium	63 152.97 Europium	Gd 64 157.25 Gadolinium	Tb 65 158.93 Terbium	Dysprosium	Ho 67 164.93 Holmium	68 167.26 Erbium	69 168.93 Thulium	Yb 70 173.04 Ytterbium	Lu 71 174.97 Lutetium
	M ^C NEIL SPECIALTY PRODUCTS	publishi	ng.com	ACTINIDES	Th 90 232.04 Thorium	Pa 91 231.04 Protacinium	U 92 238.03 Uranium	Np 93 237.05 Neptunium	Pu 94 (240) Plutonium	Am 95 243.06 Americium	96 (247) Curium	Bk 97 (248) Berkelium	Cf 98 (251) Californium	Es 99 252.08 Einsteinium	Fm 100 257.10 Fermium	Md 101 (257) Mendelevium	No 102 259.10 Nobelium	Lr 103 262.11 Lawrencium
		IcNeil Speci	0	ts														


17


Elements make up the periodic table

- Elements can be organized by similarities
- Mendeleev made the 1st periodic table
 - He ordered the elements according to atomic masses

<u>Group</u> (or family)—Column of elements with similar properties



<u>Period</u>—row of elements

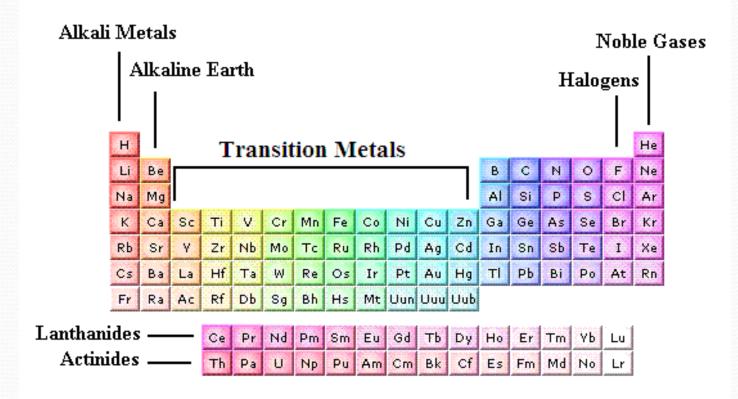
- The # of energy levels an element has
- The period # tells you how many rings to draw around the atom's nucleus
- Properties like atomic size, density, & likelihood to form ions vary in regular ways up, down, & across the chart

5.3 Periodic Table is a map of the elements

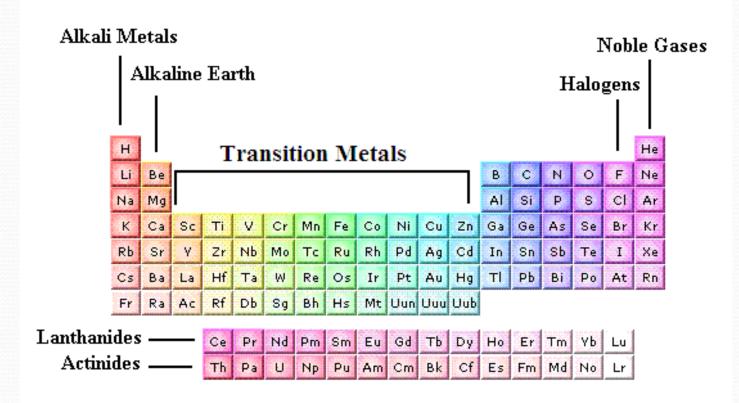
- Periodic table has distinct regions
 - Position on the table reveals something about the element (like how <u>reactive</u> it is)
 - Groups 1 & 17 are the most reactive
 - Group 18 is the least reactive (they are stable)

Most elements are metals

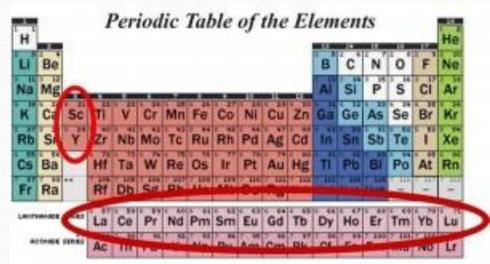
 <u>Metals</u>—usually shiny, conduct electricity & heat well, can be easily shaped (malleable) & drawn into a wire (ductility)


Metals

- 1. Reactive—families 1 & 2
 - Alkali metals (family 1)
 - Alkaline earth metals (family 2)
- 2. Transition—more stable than the reactive metals
- 3. Rare earth -referred to as the "lathanides"
- 4. Radioactive-"actinides"



Alkali metals & alkaline earth metals—at the left of

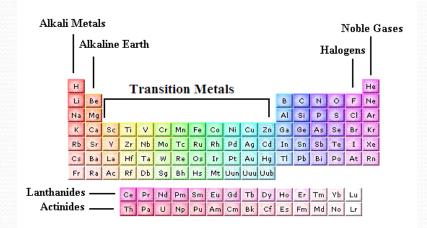

the table & are very reactive

<u>Transitions metals</u>—near the center & include copper, gold, silver, iron <u>Alloy</u>—mixture of metals

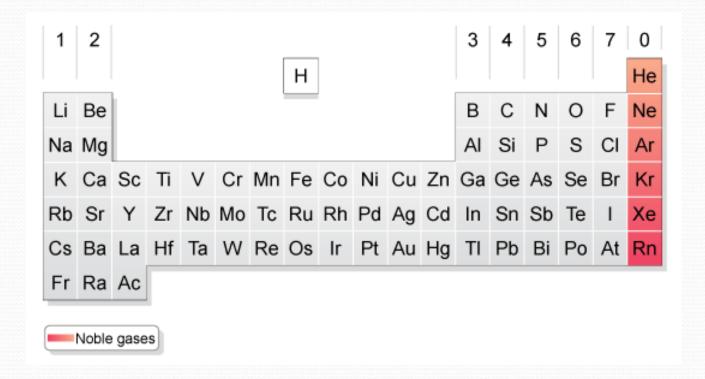
- <u>Rare earth metals</u>—next to bottom row (Lanthanides)
- <u>Radioactive</u>—bottom row (Actinides)
- <u>Bottom 2 rows</u>—separated from the table to save space

Common Properties of the Rare Earths

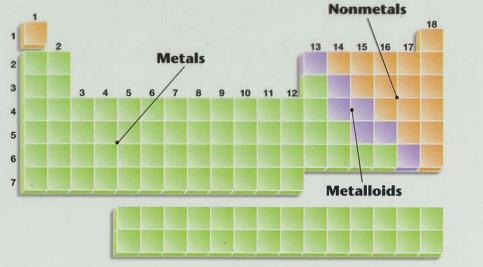
- These common properties apply to both the lanthanides and actinides.
- The rare earths are silver, silvery-white, or gray metals.
- The metals have a high luster, but tarnish readily in air.
- The metals have high electrical conductivity.
- The rare earths share many common properties. This makes them difficult to separate or even distinguish from each other.
- There are *very* small differences in solubility and complex formation between the rare earths.


2	Li	4 Be			of	Ε	lei	ne	en	ts			ь В	°c	'n	° O	9 F	10 No
3	11 Na	12 Mg	ШВ	IVB	٧B	VIB	VIIB		- VII -		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 ÅI
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	Y	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K r
5	37	38	39	40	41	42	43	44	45	46	47	48	49	⁵⁰	51	52	53	54
	Rb	Sr	Y	Z r	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		X(
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	*La	Hf	Ta	₩	Re	OS	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	R I
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110								

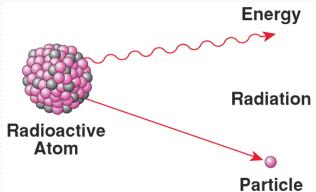
3		(alianta)	
Sc	Y	La	Ce
2US		-	A.C.
Pr	Nd	Sm	Eu
	1		1
Gd	Tb	Dy	Но
	10	W	۲
Er	Tm	Yb	Lu


*Lanthanide Series	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	71 Lu				
+ Actinide Series	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr				
	Legend - click to find out more																	
H - gas	i - so	- solid					liqui	d		Tc - synthetic								
Non-M	Non-Metals				Transition Metals					Rare	Earth	Meta	ls	Halogens				
Alkali Metals				Alkali Earth Metals						Other	Meta	ls			Inert Elements			

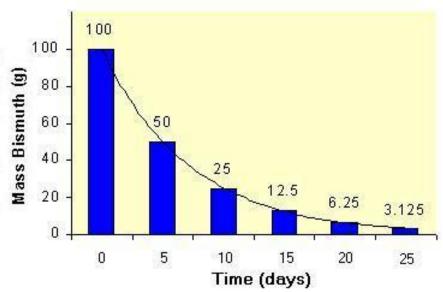
Nonmetals


- 1. Halogens—group 17, very reactive nonmetals that can easily form salts (salt formers)
- 2. Noble gases—group 18, very stable, can be used to make light bulbs
- 3. Metalloids—properties of both metals & nonmetals, make good semiconductors found in electronics

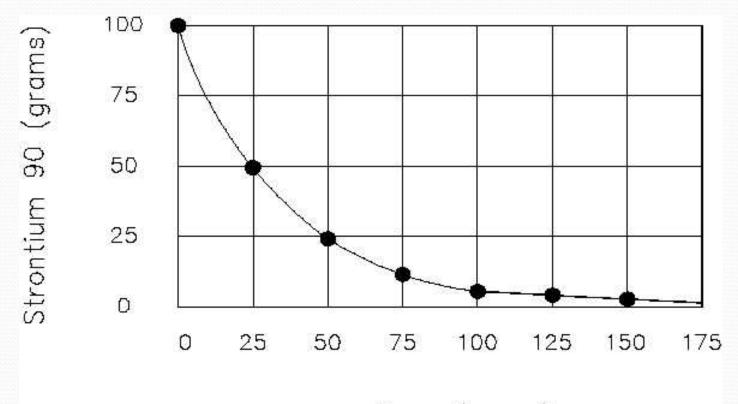
Noble Gases (inert = non reactive = stable)


- Metalloids lie between metals & nonmetals—they have characteristics of **BOTH** metals & nonmetals
 - Make good semiconductors in electronic devices Nonmetals (computer 14 15 16 17 Metals 7 8 9 10 11 12 3 chips)

Some atoms can change their identities


• <u>Radioactive decay</u>

- Atomic nucleus is held together by forces
- Sometimes there can be too many or too few neutrons so these forces cannot hold it
 - together properly
- To regain stability, the nucleus will produce particles & eject them



Radioactivity

- Identity of radioactive atoms changes when the # of protons change
- <u>Half life</u>—amount of time needed for ½ of the atoms in a particular sample to <u>decay</u>
 - Can be thousands or millions of years
 - <u>NEVER</u> decays to zero!!

If half life is 25 years...

Time (years)