90 Minutes-No Calculator

Notes: (1) In this examination, ln *x* denotes the natural logarithm of *x* (that is, logarithm to the base *e*).

- (2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number.
- 1. The area of the region between the graph of $y = 4x^3 + 2$ and the x-axis from x = 1 to x = 2 is
 - (A) 36 (B) 23 (C) 20 (D) 17 (E) 9

2. At what values of x does
$$f(x) = 3x^5 - 5x^3 + 15$$
 have a relative maximum?

	(A) -1 only	(B)	0 only	(C)	1 only	(D) -1 and 1 only	(E) -1, 0 and 1
3.	$\int_{1}^{2} \frac{x+1}{x^2+2x} dx =$						
	(A) $\ln 8 - \ln 3$	(B)	$\frac{\ln 8 - \ln 3}{2}$	(C)	ln 8	(D) $\frac{3\ln 2}{2}$	(E) $\frac{3\ln 2 + 2}{2}$

- 4. A particle moves in the *xy*-plane so that at any time *t* its coordinates are $x = t^2 1$ and $y = t^4 2t^3$. At t = 1, its acceleration vector is
 - (A) (0,-1) (B) (0,12) (C) (2,-2) (D) (2,0) (E) (2,8)

5. The curves y = f(x) and y = g(x) shown in the figure above intersect at the point (a,b). The area of the shaded region enclosed by these curves and the line x = -1 is given by

(A)
$$\int_{0}^{a} (f(x) - g(x)) dx + \int_{-1}^{0} (f(x) + g(x)) dx$$

(B)
$$\int_{-1}^{b} g(x) dx + \int_{b}^{c} f(x) dx$$

(C)
$$\int_{-1}^{c} (f(x) - g(x)) dx$$

(D)
$$\int_{-1}^{a} (f(x) - g(x)) dx$$

(E)
$$\int_{-1}^{a} \left(\left| f(x) \right| - \left| g(x) \right| \right) dx$$

6. If
$$f(x) = \frac{x}{\tan x}$$
, then $f'\left(\frac{\pi}{4}\right) =$
(A) 2 (B) $\frac{1}{2}$ (C) $1 + \frac{\pi}{2}$ (D) $\frac{\pi}{2} - 1$ (E) $1 - \frac{\pi}{2}$

- 7. Which of the following is equal to $\int \frac{1}{\sqrt{25-x^2}} dx$?
 - (A) $\arcsin \frac{x}{5} + C$ (B) $\arcsin x + C$ (C) $\frac{1}{5} \arcsin \frac{x}{5} + C$ (D) $\sqrt{25 - x^2} + C$ (E) $2\sqrt{25 - x^2} + C$

8. If f is a function such that $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = 0$, which of the following must be true?

- (A) The limit of f(x) as x approaches 2 does not exist.
- (B) f is not defined at x = 2.
- (C) The derivative of f at x = 2 is 0.
- (D) f is continuous at x = 0.
- (E) f(2) = 0

.

9. If
$$xy^2 + 2xy = 8$$
, then, at the point (1, 2), y' is

(A)
$$-\frac{5}{2}$$
 (B) $-\frac{4}{3}$ (C) -1 (D) $-\frac{1}{2}$ (E) 0

10. For
$$-1 < x < 1$$
 if $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{2n-1}$, then $f'(x) =$

(A)
$$\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n-2}$$

(B) $\sum_{n=1}^{\infty} (-1)^n x^{2n-2}$
(C) $\sum_{n=1}^{\infty} (-1)^{2n} x^{2n}$
(D) $\sum_{n=1}^{\infty} (-1)^n x^{2n}$
(E) $\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n}$

AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

- 11. $\frac{d}{dx}\ln\left(\frac{1}{1-x}\right) =$ (A) $\frac{1}{1-x}$ (B) $\frac{1}{x-1}$ (C) 1-x (D) x-1 (E) $(1-x)^2$ 12. $\int \frac{dx}{(x-1)(x+2)} =$ (A) $\frac{1}{3}\ln\left|\frac{x-1}{x+2}\right| + C$ (B) $\frac{1}{3}\ln\left|\frac{x+2}{x-1}\right| + C$ (C) $\frac{1}{3}\ln\left|(x-1)(x+2)\right| + C$ (D) $(\ln|x-1|)(\ln|x+2|) + C$ (E) $\ln\left|(x-1)(x+2)^2\right| + C$
- 13. Let *f* be the function given by $f(x) = x^3 3x^2$. What are all values of *c* that satisfy the conclusion of the Mean Value Theorem of differential calculus on the closed interval [0,3]?
 - (A) 0 only (B) 2 only (C) 3 only (D) 0 and 3 (E) 2 and 3
- 14. Which of the following series are convergent?
 - I. $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$ II. $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$ III. $1 - \frac{1}{3} + \frac{1}{3^2} - \dots + \frac{(-1)^{n+1}}{3^{n-1}} + \dots$
 - (A) I only (B) III only (C) I and III only (D) II and III only (E) I, II, and III
- 15. If the velocity of a particle moving along the x-axis is v(t) = 2t 4 and if at t = 0 its position is 4, then at any time t its position x(t) is

(A)
$$t^2 - 4t$$
 (B) $t^2 - 4t - 4$ (C) $t^2 - 4t + 4$ (D) $2t^2 - 4t$ (E) $2t^2 - 4t + 4$

16. Which of the following functions shows that the statement "If a function is continuous at x = 0, then it is differentiable at x = 0" is false?

(A)
$$f(x) = x^{-\frac{4}{3}}$$
 (B) $f(x) = x^{-\frac{1}{3}}$ (C) $f(x) = x^{\frac{1}{3}}$ (D) $f(x) = x^{\frac{4}{3}}$ (E) $f(x) = x^{3}$

17. If
$$f(x) = x \ln(x^2)$$
, then $f'(x) =$
(A) $\ln(x^2) + 1$ (B) $\ln(x^2) + 2$ (C) $\ln(x^2) + \frac{1}{x}$ (D) $\frac{1}{x^2}$ (E) $\frac{1}{x}$
18. $\int \sin(2x+3)dx =$
(A) $-2\cos(2x+3) + C$ (B) $-\cos(2x+3) + C$ (C) $-\frac{1}{2}\cos(2x+3) + C$
(D) $\frac{1}{2}\cos(2x+3) + C$ (E) $\cos(2x+3) + C$

- 19. If f and g are twice differentiable functions such that $g(x) = e^{f(x)}$ and $g''(x) = h(x)e^{f(x)}$, then h(x) =
 - (A) f'(x) + f''(x)(B) $f'(x) + (f''(x))^2$ (C) $(f'(x) + f''(x))^2$ (D) $(f'(x))^2 + f''(x)$ (E) 2f'(x) + f''(x)

20. The graph of y = f(x) on the closed interval [2,7] is shown above. How many points of inflection does this graph have on this interval?

	(A) One	(B) Two	(C) Three	(D) Four	(E) Fiv
--	---------	---------	-----------	----------	---------

21. If
$$\int f(x)\sin x \, dx = -f(x)\cos x + \int 3x^2 \cos x \, dx$$
, then $f(x)$ could be
(A) $3x^2$ (B) x^3 (C) $-x^3$ (D) $\sin x$ (E) $\cos x$
22. The area of a circular region is increasing at a rate of 96 π square meters per second. When the area of the region is 64π square meters, how fast, in meters per second, is the radius of the region increasing?
(A) 6 (B) 8 (C) 16 (D) $4\sqrt{3}$ (E) $12\sqrt{3}$
23. $\lim_{h\to 0} \frac{\int_{1}^{1+h} \sqrt{x^5 + 8} \, dx}{h}$ is
(A) 0 (B) 1 (C) 3 (D) $2\sqrt{2}$ (E) nonexistent
24. The area of the region enclosed by the polar curve $r = \sin(2\theta)$ for $0 \le \theta \le \frac{\pi}{2}$ is
(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) $\frac{\pi}{8}$ (E) $\frac{\pi}{4}$
25. A particle moves along the x-axis so that at any time t its position is given by $x(t) = te^{-2t}$. For what values of t is the particle at rest?
(A) No values (B) 0 only (C) $\frac{1}{2}$ only (D) 1 only (E) 0 and $\frac{1}{2}$
26. For $0 < x < \frac{\pi}{2}$, if $y = (\sin x)^x$, then $\frac{dy}{dx}$ is
(A) $x \ln(\sin x)$ (B) $(\sin x)^x \cot x$ (C) $x(\sin x)^{x-1}(\cos x)$
(D) $(\sin x)^x (x \cos x + \sin x)$ (E) $(\sin x)^x (x \cot x + \ln(\sin x))$

27. If *f* is the continuous, strictly increasing function on the interval $a \le x \le b$ as shown above, which of the following must be true?

I.
$$\int_{a}^{b} f(x) dx < f(b)(b-a)$$

II.
$$\int_{a}^{b} f(x) dx > f(a)(b-a)$$

III.
$$\int_{a}^{b} f(x) dx = f(c)(b-a) \text{ for some number } c \text{ such that } a < c < b$$

(A) I only (B) II only (C) III only (D) I and III only (E) I, II, and III

28. An antiderivative of $f(x) = e^{x+e^x}$ is

(A)
$$\frac{e^{x+e^x}}{1+e^x}$$
 (B) $(1+e^x)e^{x+e^x}$ (C) e^{1+e^x} (D) e^{x+e^x} (E) e^{e^x}

29.	$\lim_{x \to \frac{\pi}{4}}$	$\frac{\sin\left(x-\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}$	- is							
	(A)	0	(B)	$\frac{1}{\sqrt{2}}$	(C)	$\frac{\pi}{4}$	(D)	1	(E)	nonexistent
30.	If x	$=t^3-t$ and	d y =	$\sqrt{3t+1}$, then	$\frac{dy}{dx}$ at a	t = 1 is				
	(A)	$\frac{1}{8}$	(B)	$\frac{3}{8}$	(C)	$\frac{3}{4}$	(D)	$\frac{8}{3}$	(E)	8
31.	Wha	t are all val	ues of	f x for which the	ne serie	es $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$	- conv	verges?		
	(A)	$-1 \le x < 1$	($(B) -1 \le x \le 1$	1 (C) $0 < x < 2$	2	(D) $0 \le x < x < x < x < x < x < x < x < x < x$	< 2	(E) $0 \le x \le 2$

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

32. An equation of the line <u>normal</u> to the graph of $y = x^3 + 3x^2 + 7x - 1$ at the point where x = -1 is

(A)
$$4x + y = -10$$
 (B) $x - 4y = 23$ (C) $4x - y = 2$ (D) $x + 4y = 25$ (E) $x + 4y = -25$

- 33. If $\frac{dy}{dt} = -2y$ and if y = 1 when t = 0, what is the value of t for which $y = \frac{1}{2}$?
 - (A) $-\frac{\ln 2}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{\ln 2}{2}$ (D) $\frac{\sqrt{2}}{2}$ (E) $\ln 2$
- 34. Which of the following gives the area of the surface generated by revolving about the *y*-axis the arc of $x = y^3$ from y = 0 to y = 1?
 - (A) $2\pi \int_{0}^{1} y^{3} \sqrt{1+9y^{4}} dy$ (B) $2\pi \int_{0}^{1} y^{3} \sqrt{1+y^{6}} dy$ (C) $2\pi \int_{0}^{1} y^{3} \sqrt{1+3y^{2}} dy$ (D) $2\pi \int_{0}^{1} y \sqrt{1+9y^{4}} dy$ (E) $2\pi \int_{0}^{1} y \sqrt{1+y^{6}} dy$
- 35. The region in the first quadrant between the *x*-axis and the graph of $y = 6x x^2$ is rotated around the *y*-axis. The volume of the resulting solid of revolution is given by

(A)
$$\int_{0}^{6} \pi (6x - x^{2})^{2} dx$$

(B) $\int_{0}^{6} 2\pi x (6x - x^{2}) dx$
(C) $\int_{0}^{6} \pi x (6x - x^{2})^{2} dx$
(D) $\int_{0}^{6} \pi (3 + \sqrt{9 - y})^{2} dy$
(E) $\int_{0}^{9} \pi (3 + \sqrt{9 - y})^{2} dy$

36. $\int_{-1}^{1} \frac{3}{x^2} dx$ is

(A) -6 (B) -3 (C) 0 (D) 6 (E) nonexistent

1985 AP Calculus BC: Section I

37. The general solution for the equation $\frac{dy}{dx} + y = xe^{-x}$ is

(A)
$$y = \frac{x^2}{2}e^{-x} + Ce^{-x}$$
 (B) $y = \frac{x^2}{2}e^{-x} + e^{-x} + C$ (C) $y = -e^{-x} + \frac{C}{1+x}$

(D)
$$y = x e^{-x} + C e^{-x}$$
 (E) $y = C_1 e^x + C_2 x e^{-x}$

- 38. $\lim_{x \to \infty} \left(1 + 5e^x\right)^{\frac{1}{x}}$ is
 - (A) 0 (B) 1 (C) e (D) e^5 (E) nonexistent
- 39. The base of a solid is the region enclosed by the graph of $y = e^{-x}$, the coordinate axes, and the line x = 3. If all plane cross sections perpendicular to the *x*-axis are squares, then its volume is
 - (A) $\frac{(1-e^{-6})}{2}$ (B) $\frac{1}{2}e^{-6}$ (C) e^{-6} (D) e^{-3} (E) $1-e^{-3}$

40. If the substitution $u = \frac{x}{2}$ is made, the integral $\int_{2}^{4} \frac{1 - \left(\frac{x}{2}\right)^2}{x} dx =$

(A)
$$\int_{1}^{2} \frac{1-u^{2}}{u} du$$
 (B) $\int_{2}^{4} \frac{1-u^{2}}{u} du$ (C) $\int_{1}^{2} \frac{1-u^{2}}{2u} du$

(D)
$$\int_{1}^{2} \frac{1-u^{2}}{4u} du$$
 (E) $\int_{2}^{4} \frac{1-u^{2}}{2u} du$

41. What is the length of the arc of $y = \frac{2}{3}x^{\frac{3}{2}}$ from x = 0 to x = 3?

(A) $\frac{8}{3}$ (B) 4 (C) $\frac{14}{3}$ (D) $\frac{16}{3}$ (E) 7

42. The coefficient of x^3 in the Taylor series for e^{3x} about x = 0 is

(A)
$$\frac{1}{6}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{3}{2}$ (E) $\frac{9}{2}$

43. Let *f* be a function that is continuous on the closed interval [-2,3] such that f'(0) does not exist, f'(2) = 0, and f''(x) < 0 for all *x* except x = 0. Which of the following could be the graph of *f*?

- 44. At each point (x, y) on a certain curve, the slope of the curve is $3x^2y$. If the curve contains the point (0,8), then its equation is
 - (A) $y = 8e^{x^3}$ (B) $y = x^3 + 8$ (C) $y = e^{x^3} + 7$

(D)
$$y = \ln(x+1) + 8$$
 (E) $y^2 = x^3 + 8$

45. If *n* is a positive integer, then $\lim_{n \to \infty} \frac{1}{n} \left[\left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \ldots + \left(\frac{3n}{n} \right)^2 \right]$ can be expressed as

(A)
$$\int_{0}^{1} \frac{1}{x^{2}} dx$$
 (B) $3 \int_{0}^{1} \left(\frac{1}{x}\right)^{2} dx$ (C) $\int_{0}^{3} \left(\frac{1}{x}\right)^{2} dx$

(D)
$$\int_0^3 x^2 dx$$
 (E) $3\int_0^3 x^2 dx$

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

1985 Answer Key

1985 AB

1985 BC

1 D	24. D	1 D	24. D
2 E	25. E	2 A	25. C
3 A	26. E	3 B	26. E
4 C	27. D	4 D	27. E
5. D	28. C	5. D	28. E
6. C	29. D	6. E	29. D
7. E	30. B	7. A	30. B
8. B	31. C	8. C	31. D
9. D	32. D	9. B	32. E
10. D	33. B	10. A	33. C
11. B	34. A	11. A	34. A
12. C	35. D	12. A	35. B
13. A	36. B	13. B	36. E
14. D	37. D	14. C	37. A
15. C	38. C	15. C	38. C
16. B	39. E	16. C	39. A
17. C	40. D	17. B	40. A
18. C	41. E	18. C	41. C
19. B	42. C	19. D	42. E
20. A	43. B	20. C	43. E
21. B	44. A	21. B	44. A
22. A	45. A	22. A	45. D
23. B		23. C	

1. D
$$\int_0^2 (4x^3 + 2) dx = (x^4 + 2x) \Big|_0^2 = (16+4) - (1+2) = 17$$

2. A $f'(x) = 15x^4 - 15x^2 = 15x^2(x^2 - 1) = 15x^2(x - 1)(x + 1)$, changes sign from positive to negative only at x = -1. So f has a relative maximum at x = -1 only.

3. B
$$\int_{1}^{2} \frac{x+1}{x^{2}+2x} dx = \frac{1}{2} \int_{1}^{2} \frac{(2x+2)dx}{x^{2}+2x} = \frac{1}{2} \ln \left| x^{2}+2x \right| \Big|_{1}^{2} = \frac{1}{2} (\ln 8 - \ln 3)$$

4. D
$$x(t) = t^2 - 1 \Rightarrow \frac{dx}{dt} = 2t \text{ and } \frac{d^2x}{dt^2} = 2; \ y(t) = t^4 - 2t^3 \Rightarrow \frac{dy}{dt} = 4t^3 - 6t^2 \text{ and } \frac{d^2y}{dt^2} = 12t^2 - 12t$$

 $a(t) = \left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right) = (2, 12t^2 - 12t) \Rightarrow a(1) = (2, 0)$

5. D Area =
$$\int_{x_1}^{x_2} (\text{top curve} - \text{bottom curve}) dx, x_1 < x_2; \text{Area} = \int_{-1}^{a} (f(x) - g(x)) dx$$

6. E
$$f(x) = \frac{x}{\tan x}, f'(x) = \frac{\tan x - x \sec^2 x}{\tan^2 x}, f'\left(\frac{\pi}{4}\right) = \frac{1 - \frac{\pi}{4} \cdot \left(\sqrt{2}\right)^2}{1} = 1 - \frac{\pi}{2}$$

7. A
$$\int \frac{du}{\sqrt{a^2 - u^2}} du = \sin^{-1}\left(\frac{u}{a}\right) \Rightarrow \int \frac{dx}{\sqrt{25 - x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right) + C$$

8. C
$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2)$$
 so the derivative of f at $x = 2$ is 0.

- 9. B Take the derivative of each side of the equation with respect to x. $2xyy' + y^2 + 2xy' + 2y = 0$, substitute the point (1,2) (1)(4)y' + 2² + (2)(1)y' + (2)(2) = 0 \Rightarrow y = -\frac{4}{3}
- 10. A Take the derivative of the general term with respect to x: $\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n-2}$

11. A
$$\frac{d}{dx}\left(\ln\left(\frac{1}{1-x}\right)\right) = \frac{d}{dx}\left(-\ln(1-x)\right) = -\left(\frac{-1}{1-x}\right) = \frac{1}{1-x}$$

12. A Use partial fractions to rewrite
$$\frac{1}{(x-1)(x+2)}$$
 as $\frac{1}{3}\left(\frac{1}{x-1}-\frac{1}{x+2}\right)$

$$\int \frac{1}{(x-1)(x+2)} dx = \frac{1}{3} \int \left(\frac{1}{x-1} - \frac{1}{x+2} \right) dx = \frac{1}{3} \left(\ln|x-1| - \ln|x+2| \right) + C = \frac{1}{3} \ln\left| \frac{x-1}{x+2} \right| + C$$

13. B
$$f(0) = 0, f(3) = 0, f'(x) = 3x^2 - 6x$$
; by the Mean Value Theorem,
 $f'(c) = \frac{f(3) - f(0)}{3} = 0$ for $c \in (0,3)$.
So, $0 = 3c^2 - 6c = 3c(c-2)$. The only value in the open interval is 2.

14. C I. convergent: *p*-series with p = 2 > 1II. divergent: Harmonic series which is known to diverge III. convergent: Geometric with $|r| = \frac{1}{3} < 1$

15. C
$$x(t) = 4 + \int_0^t (2w - 4) dw = 4 + (w^2 - 4w) \Big|_0^t = 4 + t^2 - 4t = t^2 - 4t + 4$$

or, $x(t) = t^2 - 4t + C$, $x(0) = 4 \Rightarrow C = 4$ so, $x(t) = t^2 - 4t + 4$

16. C For $f(x) = x^{\frac{1}{3}}$ we have continuity at x = 0, however, $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$ is not defined at x = 0.

17. B
$$f'(x) = (1) \cdot \ln(x^2) + x \cdot \frac{\frac{d}{dx}(x^2)}{x^2} = \ln(x^2) + \frac{2x^2}{x^2} = \ln(x^2) + 2$$

18. C
$$\int \sin(2x+3) dx = \frac{1}{2} \int \sin(2x+3)(2dx) = -\frac{1}{2}\cos(2x+3) + C$$

19. D
$$g(x) = e^{f(x)}, g'(x) = e^{f(x)} \cdot f'(x), g''(x) = e^{f(x)} \cdot f''(x) + f'(x) \cdot e^{f(x)} \cdot f'(x)$$

 $g''(x) = e^{f(x)} \left(f''(x) + \left(f'(x)^2 \right) \right) = h(x)e^{f(x)} \Rightarrow h(x) = f''(x) + \left(f'(x)^2 \right)$

20. C Look for concavity changes, there are 3.

21. B Use the technique of antiderivatives by parts: u = f(x) $dv = \sin x \, dx$ $du = f'(x) \, dx$ $v = -\cos x$ $\int f(x) \sin x \, dx = -f(x) \cos x + \int f'(x) \cos x \, dx$ and we are given that $\int f(x) \sin x \, dx = -f(x) \cos x + \int 3x^2 \cos x \, dx \Rightarrow f'(x) = 3x^2 \Rightarrow f(x) = x^3$

22. A $A = \pi r^2$, $A = 64\pi$ when r = 8. Take the derivative with respect to t.

$$\frac{dA}{dt} = 2\pi r \cdot \frac{dr}{dt}; \ 96\pi = 2\pi(8) \cdot \frac{dr}{dt} \Longrightarrow \frac{dr}{dt} = 6$$

23. C
$$\lim_{h \to 0} \frac{\int_{1}^{1+h} \sqrt{x^5 + 8 \, dx}}{h} = \lim_{h \to 0} \frac{F(1+h) - F(1)}{h} = F'(1) \text{ where } F'(x) = \sqrt{x^5 + 8} \cdot F'(1) = 3$$

Alternate solution by L'Hôpital's Rule:
$$\lim_{h \to 0} \frac{\int_{1}^{1+h} \sqrt{x^5 + 8} \, dx}{h} = \lim_{h \to 0} \frac{\sqrt{(1+h)^5 + 8}}{1} = \sqrt{9} = 3$$

24. D Area
$$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\sin^{2}(2\theta)d\theta = \frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{1}{2}(1-\cos 4\theta)d\theta = \frac{1}{4}\left(\theta - \frac{1}{4}\sin 4\theta\right)\Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{8}$$

25. C At rest when
$$v(t) = 0$$
. $v(t) = e^{-2t} - 2te^{-2t} = e^{-2t}(1-2t)$, $v(t) = 0$ at $t = \frac{1}{2}$ only.

26. E Apply the log function, simplify, and differentiate. $\ln y = \ln(\sin x)^x = x \ln(\sin x)$ $\frac{y'}{y} = \ln(\sin x) + x \cdot \frac{\cos x}{\sin x} \Rightarrow y' = y (\ln(\sin x) + x \cdot \cot x) = (\sin x)^x (\ln(\sin x) + x \cdot \cot x)$

27. E Each of the right-hand sides represent the area of a rectangle with base length (b-a).

- I. Area under the curve is less than the area of the rectangle with height f(b).
- II. Area under the curve is more than the area of the rectangle with height f(a).
- III. Area under the curve is the same as the area of the rectangle with height f(c), a < c < b. Note that this is the Mean Value Theorem for Integrals.

28. E
$$\int e^{x+e^x} dx = \int e^{e^x} (e^x dx)$$
. This is of the form $\int e^u du$, $u = e^x$, so $\int e^{x+e^x} dx = e^{e^x} + C$

AP Calculus Multiple-Choice Question Collection

 $Copyright @ 2005 \ by \ College \ Board. \ All \ rights \ reserved. \ Available \ at \ apcentral. college \ board. com.$

29. D Let
$$x - \frac{\pi}{4} = t$$
. $\lim_{x \to \frac{\pi}{4}} \frac{\sin\left(x - \frac{\pi}{4}\right)}{x - \frac{\pi}{4}} = \lim_{t \to 0} \frac{\sin t}{t} = 1$

30. B At t = 1,
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{3}{2\sqrt{3t+1}}}{3t^2 - 1} \bigg|_{t=1} = \frac{\frac{3}{4}}{3-1} = \frac{3}{8}$$

31. D The center is x = 1, so only C, D, or E are possible. Check the endpoints. At x = 0: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges by alternating series test. At x = 2: $\sum_{n=1}^{\infty} \frac{1}{n}$ which is the harmonic series and known to diverge.

32. E
$$y(-1) = -6$$
, $y'(-1) = 3x^2 + 6x + 7\Big|_{x=-1} = 4$, the slope of the normal is $-\frac{1}{4}$ and an equation for the normal is $y+6 = -\frac{1}{4}(x+1) \Rightarrow x+4y = -25$.

33. C This is the differential equation for exponential growth.

$$y = y(0)e^{-2t} = e^{-2t}; \quad \frac{1}{2} = e^{-2t}; \quad -2t = \ln\left(\frac{1}{2}\right) \Longrightarrow t = -\frac{1}{2}\ln\left(\frac{1}{2}\right) = \frac{1}{2}\ln 2$$

34. A This topic is no longer part of the AP Course Description. $\sum 2\pi\rho \Delta s$ where $\rho = x = y^3$

Surface Area =
$$\int_0^1 2\pi y^3 \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = \int_0^1 2\pi y^3 \sqrt{1 + \left(3y^2\right)^2} dy = 2\pi \int_0^1 y^3 \sqrt{1 + 9y^4} dy$$

$$\sum 2\pi rh \Delta x$$
 where $r = x$ and $h = y = 6x - x^2$

$$Volume = 2\pi \int_0^6 x \left(6x - x^2 \right) dx$$

36. E
$$\int_{-1}^{1} \frac{3}{x^2} dx = 2 \int_{0}^{1} \frac{3}{x^2} dx = 2 \lim_{L \to 0^+} \int_{L}^{1} \frac{3}{x^2} dx = 2 \lim_{L \to 0^+} -\frac{3}{x} \Big|_{L}^{1}$$
 which does not exist.

37. A This topic is no longer part of the AP Course Description. $y = y_h + y_p$ where $y_h = ce^{-x}$ is the solution to the homogeneous equation $\frac{dy}{dx} + y = 0$ and $y_p = (Ax^2 + Bx)e^{-x}$ is a particular solution to the given differential equation. Substitute y_p into the differential equation to determine the values of A and B. The answer is $A = \frac{1}{2}$, B = 0.

38. C
$$\lim_{x \to \infty} \left(1 + 5e^x\right)^{\frac{1}{x}} = \lim_{x \to \infty} e^{\ln\left(1 + 5e^x\right)^{\frac{1}{x}}} = e^{\lim_{x \to \infty} \ln\left(1 + 5e^x\right)^{\frac{1}{x}}} = e^{\lim_{x \to \infty} \frac{\ln\left(1 + 5e^x\right)}{x}} = e^{\lim_{x \to \infty} \frac{5e^x}{1 + 5e^x}} = e^{\lim_{x \to \infty} \frac{5e^x}{1 + 5e^x}} = e^{\lim_{x \to \infty} \frac{1}{x}} = e^{\lim_{x \to \infty} \frac{1}{x$$

39. A Square cross sections:
$$\sum y^2 \Delta x$$
 where $y = e^{-x}$. $V = \int_0^3 e^{-2x} dx = -\frac{1}{2}e^{-2x} \Big|_0^3 = \frac{1}{2}(1 - e^{-6})$

40. A
$$u = \frac{x}{2}, du = \frac{1}{2}dx$$
; when $x = 2, u = 1$ and when $x = 4, u = 2$
$$\int_{2}^{4} \frac{1 - \left(\frac{x}{2}\right)^{2}}{x} dx = \int_{1}^{2} \frac{1 - u^{2}}{2u} \cdot 2 \, du = \int_{1}^{2} \frac{1 - u^{2}}{u} \, du$$

41. C
$$y' = x^{\frac{1}{2}}, L = \int_0^3 \sqrt{1 + (y')^2} dx = \int_0^3 \sqrt{1 + x} dx = \frac{2}{3} (1 + x)^{3/2} \Big|_0^3 = \frac{2}{3} (4^{3/2} - 1^{3/2}) = \frac{2}{3} (8 - 1) = \frac{14}{3}$$

42. E Since
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \cdots$$
, then $e^{3x} = 1 + 3x + \frac{(3x)^{2}}{2!} + \frac{(3x)^{3}}{3!} + \cdots$
The coefficient we want is $\frac{3^{3}}{3!} = \frac{9}{2}$

43. E Graphs A and B contradict f'' < 0. Graph C contradicts f'(0) does not exist. Graph D contradicts continuity on the interval [-2,3]. Graph E meets all given conditions.

44. A
$$\frac{dy}{dx} = 3x^2y \implies \frac{dy}{y} = 3x^2dx \implies \ln|y| = x^3 + K; \ y = Ce^{x^3} \text{ and } y(0) = 8 \text{ so, } y = 8e^{x^3}$$

AP Calculus Multiple-Choice Question Collection Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

45. D The expression is a Riemann sum with $\Delta x = \frac{1}{n}$ and $f(x) = x^2$. The evaluation points are: $\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{3n}{n}$

Thus the right Riemann sum is for x = 0 to x = 3. The limit is equal to $\int_0^3 x^2 dx$.