Chapter 11 Review

Part A - Measures of Central Tendency, standard deviation, histograms, & box and whisker plots

A. Answer the following based on the given data. These numbers represent the number of battle victories the gnomes had over the warlocks over a 15 year period:

1. Find the mean, median, mode, and quartiles.

$$\bar{X} = 53.733$$

median = 50

mode = 608 59

quadiles = $Q_1 = 49$ $Q_3 = 59$
 $Q_2 = 56$

4. Find the standard deviation for the data.

2. Construct a box & whisker plot for the data.

3es 1 40s 3 50s 8 60s 3

3. Construct a histogram using 30-39; 40-49; 50-59; 60-69 as categories.

Chapter 11 Review

Section B: Percentiles/cumulative percentages

B. The following frequency table tells the number of students who own x amount of garden gnomes. Construct a percentile table for the data:

x	# of students	Cumulative Amt	Percentile
0	5	5	5/19 = .003 = 6.3 percentile
1	7		12/79 = .(5) = 15.1 percentile
2	10	22	22/19=.278=27.8 percentile
3	11	33	33/79=.418=41.8 percentile
4	18	51	51/79=.646=64.6 percentile
5	16	67	47/19=, 848 = 84.8 percentile
6	12	79	79/19=1000 = 100 percentile
-	1-1 79		

Chapter 11 Review

Part C: Probability distributions

C. After polling 100 casual college football fans, the following frequency table shows how many fans attended x football games in 2012.

x games	# of fans	P(x)	x·P(x)	$(x-\mu)^2 \cdot P(x)$
0	9	10009	0(09)=0	(0-2.2)2 (.09)= .4356
1	14	14/00 = -14	1(14)=14	(1-2.2) (.14) = ,2010
2	37	3/100 = .37	2(.37)=-74	(2-2.2)2 (.37) = .0148
3	28		-	(3-2.2)2 (.28) = .1792
4	12	12/100 = . 12	A(.12)= .48	(4-2.2)2(.12) = .3888
	total 1000		Sum: 2.2	Sum = 1.22

- **5.** Construct a probability distribution for the data.
- **6.** Use the probability distribution to compute the mean for the data.

Chapter 11 Review

Part D: Binomial Distributions

D. After extensive research, it is determined that 32% of all Spain Park students have no soul. A thorough physical is conducted on 5 randomly chosen students to determine if they do not have a soul. Construct a binomial distribution for the random variable X, which represents the number of students (out of the 5) who do not have a soul. Use the binomial distribution to answer these questions.

X	PIX
0	(5) (.32) (.68) = .145 = 14.5%
1	(5) (.32) (.68) = .342 = 34.2.1.
2	$\left(\frac{5}{2}\right)\left(.32\right)^{2}\left(.68\right)^{3} = .322 = 32.27.$
3	(3)(.32)3(.68)2 = .152= 15.21/.
	(5) (,32) 4(.68) = .036 = 3.67.
5	(32) (32) (.68) = .003=0.31.

8. What is the mean and standard deviation for this data?

$$M = n\rho = 5(.32) = 1.6$$

$$\sigma = \sqrt{n\rho q} = 1.043$$

- 9. What is the probability that exactly 2 of the 5 students have no soul?

10. What is the probability that at least 3 students have no soul?
$$P(3, 4, -5) = 15.2 + 3.6 + 0.3 = 19.1\%$$

Chapter 11 Review

Part E: Normal Distributions

E. The IQ of all 132 of the teachers at Spain Park is normally distributed with a mean of 113 and a standard deviation of 9.

between 109 & 125: 90.9 - 15.85 = 75.05%

E. The IQ of all 132 of the teachers at Spain Park is normally distributed with a mean of 113 and a standard deviation of 9.

14. Teachers with an IQ in the top 20% get a free Snickers bar. What IQ does a teacher need for this prestigious reward?

Z.score:
$$10 \times 10^{-10} (.80) = .842$$
 $Z = \frac{X - x}{\sigma} \rightarrow 9(.842) = \frac{X - 113}{9} . 9$
 $7.575 = x - 113$
 $X = 120.575$

15. Thirty teachers are selected at random. What is the probability that the average IQ of these 30 teachers is under 115?

$$\nabla_{x} = \frac{\sigma}{4\pi} = \frac{9}{130} = 1.043 = \text{denderele rror}$$

$$Z = \frac{X - \sigma}{\sigma_{x}} = \frac{115 - 113}{1.043} = 1.217$$

$$norme(cdf(-4, 1.217) = .888 \rightarrow 88.3\%. \text{ chance}$$

Chapter 11 Review

Part F: Normal Approximations

for Binomial Distributions

- F. It is determined that 30% of gnomes have beard implants. Fifty gnomes are selected at random. Use a Normal Approximation of the binomial distribution to answer these questions: np>5 > m>5
 - 50(-3)=15 50(-7)=35
- M = NP = 50(.3) = 150= Jnpg = 3.24

16. What is the probability that more than 17 gnomes have beard implants?

17. What is the probability that at least 12 and at most 19 gnomes have beard implants?

$$\frac{p(12 \le X \le 19)}{1.5}; Z = \frac{11.5 - 15}{3.24} = -1.080 \rightarrow \text{normed} f(-4, -1.080) = .140 = 14\%$$