Chapter 7
Sampling Distributions

7.1 What is a Sampling Distribution?
7.2 Sample Proportions
7.3 Sample Means
Section 7.2
Sample Proportions

Learning Objectives
After this section, you should be able to…

✓ FIND the mean and standard deviation of the sampling distribution of a sample proportion

✓ DETERMINE whether or not it is appropriate to use the Normal approximation to calculate probabilities involving the sample proportion

✓ CALCULATE probabilities involving the sample proportion

✓ EVALUATE a claim about a population proportion using the sampling distribution of the sample proportion
The Sampling Distribution of \hat{p}

How good is the statistic \hat{p} as an estimate of the parameter p? The sampling distribution of \hat{p} answers this question.

Consider the approximate sampling distributions generated by a simulation in which SRSs of Reese’s Pieces are drawn from a population whose proportion of orange candies is either 0.45 or 0.15.

What do you notice about the shape, center, and spread of each?
The Sampling Distribution of \hat{p}

What did you notice about the shape, center, and spread of each sampling distribution?

Shape: In some cases, the sampling distribution of \hat{p} can be approximated by a Normal curve. This seems to depend on both the sample size n and the population proportion p.

Center: The mean of the distribution is $\mu_{\hat{p}} = p$. This makes sense because the sample proportion \hat{p} is an unbiased estimator of p.

Spread: For a specific value of p, the standard deviation $\sigma_{\hat{p}}$ gets smaller as n gets larger. The value of $\sigma_{\hat{p}}$ depends on both n and p.

There is an important connection between the sample proportion \hat{p} and the number of "successes" X in the sample.

$$\hat{p} = \frac{\text{count of successes in sample}}{\text{size of sample}} = \frac{X}{n}$$
The Sampling Distribution of \(\hat{p} \)

In Chapter 6, we learned that the mean and standard deviation of a binomial random variable \(X \) are

\[
\mu_X = np \\
\sigma_X = \sqrt{np(1-p)}
\]

Since \(\hat{p} = \frac{X}{n} = \frac{1}{n} \cdot X \), we are just multiplying the random variable \(X \) by a constant \(\frac{1}{n} \) to get the random variable \(\hat{p} \). Therefore,

\[
\mu_{\hat{p}} = \frac{1}{n} (np) = p
\]

\(\hat{p} \) is an unbiased estimator of \(p \)

\[
\sigma_{\hat{p}} = \frac{1}{n} \sqrt{np(1-p)} = \sqrt{\frac{np(1-p)}{n^2}} = \sqrt{\frac{p(1-p)}{n}}
\]

As sample size increases, the spread decreases.
The Sampling Distribution of \(\hat{p} \)

We can summarize the facts about the sampling distribution of \(\hat{p} \) as follows:

- **Mean of the Sampling Distribution of \(\hat{p} \)**

 \[\mu_{\hat{p}} = p \]

- **Standard Deviation of the Sampling Distribution of \(\hat{p} \)**

 \[\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \]

 as long as the 10% condition is satisfied: \(n \leq \frac{1}{10}N \)

Sample Proportions

Population proportion \(p \) of successes

\[
\begin{align*}
\text{SRS size } n &\rightarrow \hat{p} \\
\text{SRS size } n &\rightarrow \hat{p} \\
\text{SRS size } n &\rightarrow \hat{p} \\
\vdots &
\end{align*}
\]
Using the Normal Approximation for \hat{p}

Inference about a population proportion p is based on the sampling distribution of \hat{p}. When the sample size is large enough for np and $n(1 - p)$ to both be at least 10 (the Normal condition), the sampling distribution of \hat{p} is approximately Normal.

A polling organization asks an SRS of 1500 first-year college students how far away their home is. Suppose that 35% of all first-year students actually attend college within 50 miles of home. What is the probability that the random sample of 1500 students will give a result within 2 percentage points of this true value?

STATE: We want to find the probability that the sample proportion falls between 0.33 and 0.37 (within 2 percentage points, or 0.02, of 0.35).

PLAN: We have an SRS of size $n = 1500$ drawn from a population in which the proportion $p = 0.35$ attend college within 50 miles of home.

$$\mu_{\hat{p}} = 0.35 \quad \quad \quad \sigma_{\hat{p}} = \sqrt{\frac{(0.35)(0.65)}{1500}} = 0.0123$$

DO: Since $np = 1500(0.35) = 525$ and $n(1 - p) = 1500(0.65) = 975$ are both greater than 10, we’ll standardize and then use Table A to find the desired probability.

$$z = \frac{0.33 - 0.35}{0.123} = -1.63 \quad \quad \quad z = \frac{0.37 - 0.35}{0.123} = 1.63$$

$$P(0.33 \leq \hat{p} \leq 0.37) = P(-1.63 \leq Z \leq 1.63) = 0.9484 - 0.0516 = 0.8968$$

CONCLUDE: About 90% of all SRSs of size 1500 will give a result within 2 percentage points of the truth about the population.
Section 7.2
Sample Proportions

Summary

In this section, we learned that...

- When we want information about the population proportion \(p \) of successes, we often take an SRS and use the sample proportion \(\hat{p} \) to estimate the unknown parameter \(p \). The **sampling distribution** of \(\hat{p} \) describes how the statistic varies in all possible samples from the population.

- The **mean** of the sampling distribution of \(\hat{p} \) is equal to the population proportion \(p \). That is, \(\hat{p} \) is an unbiased estimator of \(p \).

- The **standard deviation** of the sampling distribution of \(\hat{p} \) is \(\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \) for an SRS of size \(n \). This formula can be used if the population is at least 10 times as large as the sample (the 10% condition). The standard deviation of \(\hat{p} \) gets smaller as the sample size \(n \) gets larger.

- When the sample size \(n \) is larger, the sampling distribution of \(\hat{p} \) is close to a Normal distribution with mean \(p \) and standard deviation \(\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \).

- In practice, use this Normal approximation when both \(np \geq 10 \) and \(n(1 - p) \geq 10 \) (the Normal condition).
Looking Ahead…

In the next Section…

We’ll learn how to describe and use the sampling distribution of sample means.

We’ll learn about

 ✓ The sampling distribution of \bar{x}
 ✓ Sampling from a Normal population
 ✓ The central limit theorem