Name_____

Geometry 1st Semester Exam Review

Vocabulary: Copy each word and write the definition from your notes or the book.

Test #1: Lesson	is 1-2/1-3/1-6/1-7			
1. Poir	nt	4. Line	7. Ray	10. Plane
2. Seg	ment	5. Opposite rays	8. Collinear	11. Coplanar
3. Inte	ersection	6. Midpoint	9. Segment bisector	12. Congruence
				13. Perpendicular Lines
Test #2: Lesson	ns 1.4-1.5			
14. Ac	ute angle	17. Right angle	20. Obtuse angle	22. Straight angle
15. Ad	ljacent angles	18. Vertical angles	21. Linear pair angles	23. Complementary ∡s
16. Su	pplementary ∡s	19. Angle bisector		
Test #3: Lesson	<u>is 2.1-2.4</u>			
24. Co	njecture	26. Counterexample	28. Conditional statement	
25. Co	nverse	27. Inductive reasoning		
Test #4: Lesson	is 2.5-2.6			
29. Sul	bstitution Property	32. Reflexive Property	35. Properties of equality:	
30. Tra	ansitive Property	33. Symmetric Property	addition, subtraction, mu	Iltiplication, division
31. Dis	stributive Property	34. Multiplicative Identity Prop	36. Law of Detachment	37. Law of Syllogism
Test #5: Lesson	is 3.1-3.4			
38. Sk	ew Lines	40. Transversal	42. Parallel () Lines	44. Parallel Planes
39. Co	rresponding ∡s	41. Alt. interior ∡s	43. Alt. exterior ∡s	45. Same-Side int. ∡s
Test #6: Lesson	is 3.7-3.8			
46. Slo	ppe of lines	47. Slope of \perp lines	48. Point- slope	49. Slope-intercept
Test #7: Lesson	is 3-5 and Chapter 4			
50. Ac	ute Triangle	54. Equiangular Triangle	57. SSS Postulate	60. AAS Theorem
51. Sca	alene Triangle	55. Obtuse Triangle	58. SAS Postulate	61. HL Theorem
52. Rig	ght Triangle	56. Isosceles Triangle	59. ASA Postulate	62. CPCTC
53. Eq	uilateral Triangle			
T	-			
Test #8: Chapte	er 5	CE Circumstan	C7. Commune this se	CO la senter
63. Ce	ntroid	65. Circumcenter	67. Concurrent lines	69. Incenter
64. Mi	lasegment	טט. ועופטוטח	oð.⊥ DISECTOR	70. Orthocenter
Test #9: Lesson	<u>is 6.2-6.5</u>			
Define	e and List Properties Of:			
71. Pa	rallelogram	72. Rectangle	73. Rhombus	74. Square

Application:

1. Name 3 collinear points

Name 4 coplanar points.

2. If PQ = 7 and PR = 24, Then QR =

Geometry

- 3. Find the coordinates of the midpoint of \overline{AB} A(14, -2), B(7, -8)
- Find the distance between the pair of points.
 - A(6,7), B(-1,7)

- 5. On a number line, P is at -5 and R is at 5. What is the coordinate of Q, which is 2/5 of the way from P to R?
- 6. Find the area and perimeter of the following figure on the coordinate plane. *A*(0, 0), *B*(0, 5), *C*(6, 5), *D*(6, 0)

11.

- 7. What are two other names for $\angle 1$?
- Find the measure of m∠MLP and classify.

Solve for x and y.

(17x + 4)

13.

- 10. If $m \angle RZT = 114^\circ$, $m \angle RZS = 3x-2$, and $m \angle TZS = 8x+6$, what are $m \angle RZS$ and $m \angle TZS$?
 - \overrightarrow{QS} bisects $\angle PQR$. Solve for x and find $m \angle PQR$.
 - $m \angle PQS = 3x; m \angle SQR = 5x 20$
- 14. What are the next two terms in the sequence?3, 5, 9, 15, 23, ...
- 15. What are the next two pictures in the sequence?

- 16. Determine if the conditional is true or false. If it is false, give a counter-example.
 - If an animal barks, then it is a seal.

For 17-18, If the conditional and its converse are both true, then write it as a biconditional. If the converse is false, explain why.

- 17. If the temperature outside is below freezing, then ice can form on the sidewalks
- 18. If two angles are complementary, then their measures sum to 90.

For 19-21, Use the Law of Detachment and the Law of Syllogism to make conclusions from the following statements, or write, no conclusion.

- 19. If a triangle is a right triangle, then the triangle has one 90° angle. $\triangle ABC$ is a right triangle.
- 20. To take Calculus, you must first take Algebra 2. To take Algebra 2, you must first take Algebra 1.
- 21. If cats prowl, mice will scatter. Mice are scattering.

For 22-25, Name the property that justifies going from the first statement to the second statement.

22.	3(x+2) = 15	23.	${\bf 4}A\cong{\bf 4}B$, ${\bf 4}B\cong{\bf 4}C$	24.	7x + 5, x = 5	25.	9x = -5y
	3x + 6 = 15		$\measuredangle A \cong \measuredangle C$		7(5) + 5		9x - 7 = -5y - 7

26. Fill in the missing reasons		<u>Statements</u>			<u>Reasons</u>
A	Given:	1.	$m \not AEB = m \not ACED$	1.	?
B	$m \measuredangle AEB = m \measuredangle CED$	2.	$m \measuredangle AEC = m \measuredangle AEB + m \measuredangle BEC$	2.	?
\sim	Prove:	3.	$m \measuredangle BED = m \measuredangle CED + m \measuredangle BEC$	3.	?
D	$m \measuredangle AEC = m \measuredangle BED$	4.	$m \not = AEC = m \not = CED + m \not = BEC$	4.	?
		5.	$m \not AEC = m \not ABED$	5.	?

- 27. Use the diagram to name a plane.
- 28. Use the diagram to name the plane parallel to TSXY.

31.

For 29-33, Determine if the numbered angles are alternate interior, alternate exterior, corresponding or consecutive interior.

29.

32.

30.

34. Find $m \angle 1$ and $m \angle 2$.

37. Find the slope of the line passing through the given points. (2, 0), (-6, 8)

20

40. Use the graph to decide if the

35. Find the value of x for which $a \parallel b$.

38. Write an equation of a line that passes through points, (-2, 0) & (3, 10)

36. Which line segments are || ? Explain

- 39. Write the equation of a line with the given information slope $\frac{3}{4}$, through (-8, 2)
- 41. Write an equation of a line that is \perp to the given line & goes through D D(6,2); y = -3x + 5

42. Write an equation of a line that is || to the given line & through C

C(8,1); y = 2x + 6

For 43-46, Can the triangles be proven congruent? State which method or write not enough information.

47. Fill in the missing statements or reasons in the proof.

Given: $\overline{YA} \cong \overline{BA}, \measuredangle B \cong \measuredangle Y$		Statements	<u>Reasons</u>		
Prove: $\overline{AZ} \cong \overline{AC}$	1.	$\overline{YA} \cong \overline{BA}, \angle B \cong \angle Y$	1.	?	
γZ	2.	∠YAZ ≅ ∠BAC	2.	?	
	3.	?	3.	?	
TX .	4.	$\overline{AZ} \cong \overline{AC}$	4.	?	
c ^L B		•	•		

49. Find x & y

50. Find the $m \neq 1 \& m \neq 2$

For 52-53, *D* is the midpoint of \overline{AB} . *E* is the midpoint of \overline{CB}

54. Name the 3 "centers" of a Δ , the types of lines that create them.

62.

55-57, Solve for the variables in the parallelogram

For 58-59, can you prove the quadrilateral is a parallelogram based on the given information? Explain.

59.

61.

P |

For 60-62, Is the parallelogram a rhombus, rectangle, or square?

60.

63. Find the value of the variables in the rhombus

64. Solve for x in Square LMNO.

 $\langle \rangle$

65. Solve for x in the Rhombus.

