- 1. **Given:** ≰1 and ≰2 are complements
 - ∡3 and ∡4 are complements
 - **≱**2 ≅ **⋠**4

Statements

Prove: $41 \cong 43$

1. 41 and 42 are complements 43 and 44 are complements
42 ≅ 44
2 (2 (4

- $2. m \angle 2 = m \angle 4$
- $3. m \ne 1 + m \ne 2 = 90, m \ne 3 + m \ne 4 = 90$
- $4. m \le 1 + m \le 2 = m \le 3 + m \le 4$
- $5. m \le 1 + m \le 4 = m \le 3 + m \le 4$
- 5. $m \angle 1 = m \angle 3$
- 6. ∡1 ≅ ∡3

11	11
1//	_3
/ /2	4

Reasons

1.

2.

3.

4.

5.

5.			
6.			

2. Given: $m \angle 3 = 120$, $\angle 1 \cong \angle 4$, $\angle 3 \cong \angle 4$

Prove: $m \angle 1 = 120$

Reasons
1.
2. Transitive Property
3.
4.

3. **Given:** $\angle 3$ and $\angle 2$ are complementary, $m \angle 1 + m \angle 2 = 90^{\circ}$

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
1. $\angle 3$ and $\angle 2$ are complementary, $m\angle 1+m\angle 2=90^\circ$	1.
2.	2. Definition of Complementary ∠'s
$3. m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3.
4.	4. Subtraction Property of Equality
5. ∠1 ≅ ∠3	5.

4. Giv	en : ∠5 ≅ ∠6
Pro	ve: $\angle 4 \cong \angle 7$

			1
4	5	6	1

Statements	Reasons
1. ∠5 ≅ ∠6	1.
2. $\angle 4 \cong \angle 5$ and $\angle 6 \cong \angle 7$	2.
3. ∠4 ≅ ∠6	3.
4.∠4 ≅ ∠7	4.
4. 24 = 27	

5. **Given:**
$$AB \perp BC$$

Prove: $\angle 1$ and $\angle 2$ are complementary

Statements	Reasons
1. $\overline{AB} \perp \overline{BC}$	1.
2. ∠ABC is a right angle	2.
$3. m \angle ABC = 90$	3.
$4. \ m \angle 1 + m \angle 2 = m \angle ABC$	4.
5. $m \angle 1 + m \angle 2 = 90$	5.
6. ∠1 and ∠2 are complementary	6.

7. **Given:** \overrightarrow{CA} bisects $\angle BCD$, $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 3$

	A D
E	3/
B	2/
}	

Statements	Reasons
1) $m \angle 1 = m \angle 3$	1)
2) <i>m</i> ∠2 = <i>m</i> ∠2	2)
3) $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	3)
4) $m \angle 1 + m \angle 2 = m \angle AEC$	4)
5) $m \angle 2 + m \angle 3 = m \angle BED$	5)
6) $m \angle AEC = m \angle BED$	6)

Statements	Reasons
1) \overrightarrow{CA} bisects $\angle BCD$	1)
2) ∠1 ≅ ∠2	2)
3) ∠2 ≅ ∠3	3)
4) ∠1 ≅ ∠3	4)