7. x = 10

Fill in the missing reasons for each proof.

Statements	Reasons
1. AC = 31	1
2. AB + BC = AC	2
3.	3. Substitution
4.5x + 1 = 31	4
5.5x = 30	5
6. $x = 6$	6

3. Given: $\overline{AL} \cong \overline{SK}$ Prove: $\overline{AS} \cong \overline{LK}$ A
L
S
K

Statements	Reasons
1. $\overline{AL} \cong \overline{SK}$	1
2	2. Def of ≅ seg
3. LS = LS	3
4. AL + LS = SK + LS	4
5. AL + LS = AS	5
6	6. Segment Add Post
7. AS = LK	7
8. $\overline{AS} \cong \overline{LK}$	8

Statements	Reasons
1. \overrightarrow{BD} bisects $\angle ABC$	1
2	2. Def∠ Bisector
$3. \angle 2 \cong \angle 3, \angle 1 \cong \angle 4$	3
4. ∠1 ≅ ∠3	4
5. ∠3 ≅ ∠4	5

Statements	Reasons
1. $\overline{FR} \cong \overline{AN}$	1
2. FR = AN	2
3. RA = RA	3
4	4. Addition POE
5. FR + RA = FA	5
6	6. Segment Add Post
7. FA = RN	7
8	8. Def ≃ segments

õ	6. Segment Add Post
7. FA = RN	7
3	8. Def ≅ segments
5. Given : \overrightarrow{RV} bisects $\angle SRT$	1 2

Prove: $\angle 3 \cong \angle 2$

Statements	Reasons
1. \overrightarrow{RV} bisects $\angle SRT$	1
2. ∠1 ≅ ∠2	2
3. ∠3 ≅ ∠1	3
4 /3 ≃ /2	1

7. **Given**: $\angle 1$ and $\angle 2$ are complementary

 $\angle 1 \cong \angle 3$ $\angle 2 \cong \angle 4$

Prove: $\angle 3$ and $\angle 4$ are complementary

8. **Given**: $\angle 1$ and $\angle 4$ are complementary

Prove: $\angle 2$ and $\angle 3$ are complementary

Statements	Reasons	Statements	Reasons
1. $\angle 1$ and $\angle 2$ are complementary	1	1. $\angle 1$ and $\angle 4$ are complementary	1
2. $m \angle 1 + m \angle 2 = 90$	2	2 and	2. VAT
3 and	3. Given	3. $m \angle 1 = m \angle 3$ and $m \angle 2 = m \angle 4$	3
$4. \ m \angle 1 = m \angle 3 \text{ and } m \angle 2 = m \angle 4$	4	4. ∠2 and ∠3 are complementary	4
5	5. Substitution		1
6. $∠3$ and $∠4$ are complementary	6		

9. **Given:** $\angle A$ is complementary to $\angle ADB$ $\angle C$ is complementary to $\angle CDB$

 \overrightarrow{DB} bisects $\angle ADC$

Prove: $\angle A \cong \angle C$

Statements

- 1. $\angle A$ is complementary to $\angle ADB$ $\angle C$ is complementary to $\angle CDB$ \overrightarrow{DB} bisects $\angle ADC$
- $2. \angle ADB \cong \angle CDB$
- 3. $m \angle ADB = m \angle CDB$
- $5. \angle A \cong \angle C$

- 4. Substitution

Reasons

- 10. **Given:** $\angle 1$ and $\angle 2$ are complementary $\angle 2$ and $\angle 3$ are complementary \overrightarrow{BD} bisects $\angle ABC$

Prove: $\angle 1 \cong \angle 2$

Statements

1. $\angle 1$ and $\angle 2$ are complementary $\angle 2$ and $\angle 3$ are complementary

2. $\angle 1 \cong \angle 3$

 $4. \angle 2 \cong \angle 3$

 $5. \angle 1 \cong \angle 2$

Reasons

- 3. Given
- 4. _____