8-2 Practice

Vectors in the Coordinate Plane

Find the component form and magnitude of \overrightarrow{AB} with the given initial and terminal points.

2.
$$A(4, -2), B(5, -5)$$

3.
$$A(-3, -6), B(8, -1)$$

$$\langle -3, -1 \rangle; \sqrt{10}$$

$$\langle 1, -3 \rangle; \sqrt{10}$$

Find each of the following for $v = \langle 2, -1 \rangle$ and $w = \langle -3, 5 \rangle$.

Find a unit vector u with the same direction as v.

8.
$$\mathbf{v} = \langle -3, 6 \rangle \quad \left\langle -\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5} \right\rangle$$

9.
$$\mathbf{v} = \langle -8, -2 \rangle \quad \left(-\frac{4\sqrt{17}}{17}, -\frac{\sqrt{17}}{17} \right)$$

Let \overrightarrow{DE} be the vector with the given initial and terminal points. Write \overrightarrow{DE} as a linear combination of the vectors i and j.

10.
$$D(4, -5), E(6, -7)$$
 2i – 2j

11.
$$D(-4,3), E(5,-2)$$
 9i - 5j

12.
$$D(4, 6), E(-5, -2)$$
 -9i - 8j

13.
$$D(2, 1), E(3, 7)$$
 i + 6j

Find the component form of v with the given magnitude and direction angle.

14.
$$|\mathbf{v}| = 12$$
, $\theta = 42^{\circ}$ (8.9, 8.0)

15.
$$|\mathbf{v}| = 8$$
, $\theta = 132^{\circ}$ $\langle -5.4, 5.9 \rangle$

16. GARDENING Anne and Henry are lifting a stone statue and moving it to a new location in their garden. Anne is pushing the statue with a force of 120 newtons at a 60° angle with the horizontal while Henry is pulling the statue with a force of 180 newtons at a 40° angle with the horizontal. What is the magnitude of the combined force they exert on the statue?

1

Practice 8-5

Dot and Cross Products of Vectors in Space

Find the dot product of u and v. Then determine if u and v are orthogonal.

1. $\langle -2, 0, 1 \rangle$ · $\langle 3, 2, -3 \rangle$

2. $\langle -4, -1, 1 \rangle \cdot \langle 1, -3, 4 \rangle$

3. $(0,0,1) \cdot (1,-2,0)$

-9; not orthogonal

3; not orthogonal

0; orthogonal

Find the angle θ between vectors u and v to the nearest tenth of a degree.

4. $\mathbf{u} = \langle 1, -2, 1 \rangle$, v = (0, 3, -2)

5. $\mathbf{u} = (3, -2, 1),$ $v = \langle -4, -2, 5 \rangle$ 6. $\mathbf{u} = (2, -4, 4),$ $v = \langle -2, -1, 6 \rangle$

about 154.9°

about 96.9°

about 51.3°

Find the cross product of u and v. Then show that $u \times v$ is orthogonal to both u and v.

7. $(1, 3, 4) \times (-1, 0, -1)$

$$\langle -3, -3, 3 \rangle$$
; $\langle -3, -3, 3 \rangle \cdot \langle 1, 3, 4 \rangle$
= $-3(1) + (-3)(3) + (3)(4) = 0$;

$$= -3(1) + (-3)(3) + (3)(4) = 0,$$

$$\langle -3, -3, 3 \rangle \cdot \langle -1, 0, -1 \rangle$$

$$= (-3)(-1) + (-3)(0) + 3(-1) = 0$$

$$\langle 27, 3, 14 \rangle$$
; $\langle 27, 3, 14 \rangle \cdot \langle 3, 1, -6 \rangle$
= $(27)(3) + 3(1) + (14)(-6) = 0$;

$$\langle 27, 3, 14 \rangle \cdot \langle -2, 4, 3 \rangle$$

$$= (27)(-2) + (3)(4) + (14)(3) = 0$$

9. $(3, 1, 2) \times (2, -3, 1)$

$$\langle 7, 1, -11 \rangle$$
; $\langle 7, 1, -11 \rangle \cdot \langle 3, 1, 2 \rangle$
= $(7)(3) + (1)(1) + (-11)(2) = 0$;
 $\langle 7, 1, -11 \rangle \cdot \langle 2, -3, 1 \rangle - \langle 7 \rangle \langle 2 \rangle$

 $\langle 7, 1, -11 \rangle \cdot \langle 2, -3, 1 \rangle = (7)(2)$ +(1)(-3)+(-11)(1)=0

10. $\langle 4, -1, 0 \rangle \times \langle 5, -3, -1 \rangle$

 $8. (3, 1, -6) \times (-2, 4, 3)$

$$\langle 1, 4, -7 \rangle$$
; $\langle 1, 4, -7 \rangle \cdot \langle 4, -1, 0 \rangle$
= $(1)(4) + (4)(-1) + (-7)(0) = 0$;

$$\langle 1, 4, -7 \rangle \cdot \langle 5, -3, -1 \rangle = (1)(5) + (4)(-3) + (-7)(-1) = 0$$

Find the area of the parallelogram with adjacent sides u and v.

11. $\mathbf{u} = \langle 9, 4, 2 \rangle, \mathbf{v} = \langle 6, -4, 2 \rangle$

12.
$$\mathbf{u} = \langle 2, 0, -8 \rangle, \mathbf{v} = \langle -3, -8, -5 \rangle$$

62.4 units2

74.2 units2

13. Find the volume of the parallelepiped with adjacent edges represented by the vectors (3, -2, 9), (6, -2, -7), and (-8, -5, -2).

643 units3

14. TOOLS A mechanic applies a force of 35 newtons straight down to a ratchet that is 0.25 meter long. What is the magnitude of the torque when the handle

Practice 8-4

Vectors in Three-Dimensional Space

Plot each point in a three-dimensional coordinate system.

1. (-3, 4, -1)

2. (2, 0, -5)

Locate and graph each vector in space.

3. (4, 7, 6)

4. (4, -2, 6)

Find the component form and magnitude of \overrightarrow{AB} with the given initial and terminal points. Then find a unit vector in the direction of \overrightarrow{AB} .

$$\langle -6, 4, 4 \rangle; 2\sqrt{17}$$

 $\left\langle -\frac{3\sqrt{17}}{17}, \frac{2\sqrt{17}}{17}, \frac{2\sqrt{17}}{17} \right\rangle$

$$\langle 11, -3, -17 \rangle; \sqrt{419}$$

 $\langle \frac{11\sqrt{419}}{419}, -\frac{3\sqrt{419}}{419}, -\frac{17\sqrt{419}}{419} \rangle$

$$(3, 1, -9); \sqrt{91}$$

 $\left(\frac{3\sqrt{91}}{91}, \frac{\sqrt{91}}{91}, -\frac{9\sqrt{91}}{91}\right)$

$$\langle 1, -11, 17 \rangle; \sqrt{411}$$

$$\left(\frac{\sqrt{411}}{411}, -\frac{11\sqrt{411}}{411}, \frac{17\sqrt{411}}{411}\right)$$

Find the length and midpoint of the segment with the given endpoints.

9.
$$(3, 4, -9), (-4, 7, 1)$$

$$\sqrt{158}$$
; $\left(-\frac{1}{2}, \frac{11}{2}, -4\right)$

$$\sqrt{445}$$
; $\left(-7, -6, \frac{7}{2}\right)$

Find each of the following for $v = \langle 2, -4, 5 \rangle$ and $w = \langle 6, -8, 9 \rangle$.

12.
$$5v - 2w$$

$$(8, -12, 14)$$

$$\langle -2, -4, 7 \rangle$$