
Each correct question earns ½ bonus point with a maximum of 5 bonus points added to your assignment grade. Show your work for problem # 4.

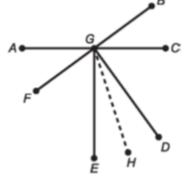
1. In this figure, what definition supports the following statement?

If $m \angle 1 + m \angle 2 = 180^{\circ}$, then $\angle 1$ is supplementary to $\angle 2$.

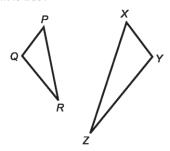
- A. Definition of complementary angles
- B. Definition of adjacent angles
- C. Definition of supplementary angles
- D. Definition of right angle
- 3. Given that $\angle 1 \cong \angle 2$, what can be concluded about lines m and n?

- **A.** m is parallel to n.
- **B.** m is perpendicular to n.
- C. m intersects n.
- **D.** m is skew to n.
- 5. Given:

 \overline{AC} is perpendicular to \overline{GE}

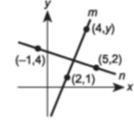

 \overline{GD} is perpendicular to \overline{BF}

GH bisects ∠EGD

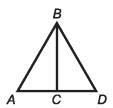

 $m \angle BGC = 36^{\circ}$

What is *m∠EGH*?

- A. 18°
- B. 27°
- C. 36°
- D. 54°


2. In the figure below, $\triangle PQR$ and $\triangle XYZ$ are both scalene. If $\triangle PQR \cong \triangle XYZ$, which congruency statement is true?

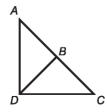
- **A.** $\angle Q \cong \angle X$
- **B.** $\overline{ZX} \cong \overline{RQ}$
- **C.** $\angle R \cong \angle Y$
- **D.** $\overline{PQ} \cong \overline{YX}$
- 4. In the coordinate plane, $\stackrel{\longleftrightarrow}{n}$ passes through the points (-1,4) and (5,2) and $\stackrel{\longleftrightarrow}{m}$ passes through the points (2,1) and (4,y). For what value of y is $\stackrel{\longleftrightarrow}{n}$ perpendicular to $\stackrel{\longleftrightarrow}{m}$?


- **B.** $\frac{1}{3}$
- **C.** 5
- **D.** 7

6. Given:

$$\triangle ABC \cong \triangle DBC$$

$$2m\angle CBD = m\angle ADB$$

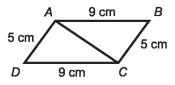

Which term best describes triangle $\triangle ABD$?

- A. Isosceles
- B. Right
- C. Scalene
- D. Equilateral

- 7. If a number is even, then it is divisible by 2. What is the contrapositive of this statement?
 - **A.** If a number is divisible by 2, then it is even.
 - B. If a number is not divisible by 2, then it is not even.
 - C. If a number is not even, then it is not divisible by 2.
 - **D.** A number is even if and only if it is divisible by 2.
- 9. The slope of \overline{CD} is $\frac{4}{5}$ and the slope of \overline{AB} is $-\frac{5}{4}$. What can be concluded about \overline{CD} and \overline{AB} ?
 - **A.** \overline{CD} and \overline{AB} are parallel.
 - **B.** \overline{CD} and \overline{AB} are congruent.
 - **C.** \overline{CD} is shorter than \overline{AB} .
 - **D.** \overline{CD} and \overline{AB} are perpendicular.
- 11. Albert wrote this proof, which contains one mistake.

Given: $\overline{BD} \perp \overline{AC}$, $\overline{AB} \cong \overline{BC}$

Prove: $\triangle ADC$ is isosceles.



Statement	Reason
1. \overline{BD} ⊥ \overline{AC}	1. Given
2. ∠ABD and ∠CBD are right angles.	2. Perpendicular lines form right angles.
3. ∠ <i>ABD</i> ≅ ∠ <i>CBD</i>	3. Right angles are congruent.
4. \overline{AB} ≅ \overline{BC}	4. Given
5. \overline{BD} ≅ \overline{BD}	5. Reflexive property
6. ∆ABD ≅ ∆CBD	6. Hypotenuse leg
7. AD ≅ CD	7. CPCTC
8. ΔADC is isosceles.	8. Definition of isosceles triangle

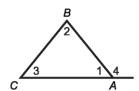
Which statement or reason of Albert's proof is incorrect?

- A. Reason 3
- B. Reason 6
- C. Statement 2
- D. Statement 5

8. In this figure, which triangle is congruent to $\triangle ABC$?

- A. $\triangle ADC$
- B. ∆ACD
- C. $\triangle CAD$
- D. △CDA
- 10. Which is the equation of a line perpendicular to $y = \frac{3}{2}x + 8$?

A.
$$y = \frac{3}{2}x + 5$$


B.
$$y = -\frac{3}{2}x + 5$$

C.
$$y = -\frac{2}{3}x + 5$$

D.
$$y = \frac{2}{3}x + 5$$

12. Given: $\triangle ABC$ with exterior $\angle 4$

Prove: $m \angle 4 = m \angle 2 + m \angle 3$

Statements	Reasons
1. $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$	
2. <i>m</i> ∠1 + <i>m</i> ∠4 = 180°	
3. <i>m</i> ∠1 + <i>m</i> ∠4 = <i>m</i> ∠1 + <i>m</i> ∠2 + <i>m</i> ∠3	
4. <i>m</i> ∠4 = <i>m</i> ∠2 + <i>m</i> ∠3	

To complete the proof, what is the correct order of reasons I-IV ?

- I. Substitution Property
- II. Definition of Straight Angle
- III. Subtraction Property
- IV. The sum of the measures of the angles in a triangle is 180° .
- A. IV, II, I, III
- B. IV, II, III, I
- C. II, IV, I, III
- **D.** II, IV, III, I