Chapter 1 Functions and Their Graphs

Section 1.1 Functions

Important Vocabulary

Objective: In this lesson you learned how to evaluate functions and find their domains.

Function A function f from a set A to a set B is a relation that assigns to each element x in the set A exactly one element y in the set B. **Domain** The set of inputs of the function f.

Define each term or concept.

Range The set of all outputs for the given set of inputs of the function *f*.

Independent variable A variable in an equation that represents a function that can take on any value for which the function is defined. **Dependent variable** A variable in an equation that represents a function whose value depends on the value of the independent variable.

I. Introduction to Functions (Pages 74–76)

A rule of correspondence that pairs items from one set with items from a different set is a <u>relation</u>.

In functions that can be represented by ordered pairs, the first coordinate in each ordered pair is the <u>input</u> and the second coordinate is the <u>output</u>.

Some characteristics of functions are . . .

- Each element in the domain must be matched with an element of the range.
- 2) Some elements in the range may not be matched with any element in the domain.
- Two or more elements of the domain may be matched with the same element of the range.

To decide whether a relation is a function, . . . decide whether each input value is matched with exactly one output value.

If any input value of a relation is matched with two or more output values, . . . the relation is not a function.

What you should learn How to decide whether relations between two variables are functions

Course Number

Date

Instructor

Some common ways to represent functions are . . .

- 1) Verbally in a sentence
- 2) Numerically in a table or list of ordered pairs
- 3) Graphically by points on a graph in the coordinate plane
- 4) Algebraically by an equation in two variables

Example 1: Decide whether the table represents y as a function of y.

01λ .					
x	- 3	- 1	0	2	4
у	5	- 12	5	3	14

Yes, this table represents *y* as a function of *x*.

II. Function Notation (Pages 76–77)

The symbol f(x) is **function notation** for the value of *f* at *x* or *f* of *x*, used to describe *y* as a function of *x*. In this case, f is the name of the function and f(x) is the output value of the function at the input value *x*.

Example 2: If $f(w) = 4w^3 - 5w^2 - 7w + 13$, describe how to find f(-2). Replace each occurrence of w in the function by - 2 and evaluate the resulting numerical expression.

A piecewise-defined function is . . . a function that is defined by two or more equations, each over a specified domain.

III. The Domain of a Function (Page 78)

If x is in the domain of f, then f is said to be <u>defined</u> at x. If x is not in the domain of f, then f is said to be <u>undefined</u> at x.

The **implied domain** of a function defined by an algebraic expression is . . . the set of all real numbers for which the expression is defined.

What you should learn How to use function notation and evaluate functions

What you should learn How to find the domains of functions

For example, the implied domain of the function $f(x) = \sqrt{5x-8}$

is . . . the set of all real numbers greater than or equal to 8/5, or $[8/5, \infty)$.

IV. Applications of Functions (Pages 79–81)

A difference quotient is defined as . . .

 $[f(x+h) - f(x)]/h, h \neq 0.$

Describe a real-life situation which can be represented by a function.

Answers will vary.

Additional notes

What you should learn How to use functions to model and solve real-life problems

٧

Additional notes

Larson/Hostetler/Edwards Precalculus: Functions and Graphs, A Graphing Approach, 3rd Edition Student Success Organizer IAE Copyright © Houghton Mifflin Company. All rights reserved.