Chapter 12 Limits and an Introduction to Calculus

Section 12.1 Introduction to Limits

Objective: In this lesson you learned how to estimate limits and use properties and operations of limits.
I. The Limit Concept and Definition of Limit (Pages 806-808)

Define limit.
If $f(x)$ becomes arbitrarily close to a unique number L as x approaches c from either side, the limit of $f(x)$ as x approaches c is L. This written as $\lim _{x \rightarrow c} f(x)=L$.

Describe how to estimate the limit $\lim _{x \rightarrow-2} \frac{x^{2}+4 x+4}{x+2}$ numerically.
Let $f(x)=\left(x^{2}+4 x+4\right) /(x+2)$. Then construct a table that shows values of $f(x)$ when x is close to -2 . Use the table to look for a numerical trend in the value of $f(x)$ as x approaches -2 . This is an estimate of the limit.

The existence or nonexistence of $f(x)$ when $x=c$ has no bearing on the existence of \ldots the limit of $f(x)$ as x approaches c.

II. Limits That Fail to Exist (Pages 809-810)

The limit of $f(x)$ as $x \rightarrow c$ does not exist if any of the following conditions is true:

What you should learn
How to decide whether limits of functions exist

1. $f(x)$ approaches a different number from the right side of c than from the left side of c.
2. $f(x)$ increases or decreases without bound as x approaches c.
3. $f(x)$ oscillates between two fixed values as x approaches c.

Give an example of a limit that does not exist.
Answers will vary.

What you should learn

How to use the definition of a limit to estimate limits

Course Number
Instructor
Date

III. Properties of Limits (Pages 811-812)

Let b and c be real numbers and let n be a positive integer.
Complete each of the following properties of limits.

1. $\lim _{x \rightarrow c} b=$ \qquad
2. $\lim _{x \rightarrow c} x=$ \qquad
3. $\lim _{x \rightarrow c} x^{n}=$ \qquad
4. $\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}$, for n even and $c>0$

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=K
$$

Complete each of the following statements about operations with limits.

1. Scalar multiple: $\quad \lim _{x \rightarrow c}[b f(x)]=$ \qquad
2. Sum or difference: $\quad \lim _{x \rightarrow c}[f(x) \pm g(x)]=$ \qquad
3. Product:

$$
\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\quad L K
$$

4. Quotient: $\quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\underline{L / K, \text { provided } K \neq 0}$
5. Power: $\quad \lim _{x \rightarrow c}[f(x)]^{n}=$ \qquad
Example 1: Find the limit: $\lim _{x \rightarrow 2} \frac{4-x^{2}}{x}$.

What you should learn
How to use properties and operations of limits to find limits

