Section 12.4 Limits at Infinity and Limits of Sequences

Objective: In this lesson you learned how to evaluate limits at infinity and find limits of sequences.

Course Number
Instructor
Date

I. Limits at Infinity and Horizontal Asymptotes (Pages 835-838)

Define limits at infinity.

If f is a function and L_{1} and L_{2} are real numbers, the statements $\lim _{x \rightarrow-\infty} f(x)=L_{1}$ and $\lim _{x \rightarrow \infty} f(x)=L_{2}$ denote the limits at infinity.

The first is read "the limit of $f(x)$ as x approaches $-\infty$ is L_{1}," and the second is read "the limit of $f(x)$ as x approaches ∞ is L_{2}."

To help evaluate limits at infinity, you can use the following:
If r is a positive real number, then $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=$ \qquad .

If x^{r} is defined when $x<0$, then $\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=$ \qquad .

Example 1: Find the limit: $\lim _{x \rightarrow \infty} \frac{1+5 x-3 x^{3}}{x^{3}}$ -3

If $f(x)$ is a rational function and the limit of f is taken as x
approaches ∞ or $-\infty$,

- When the degree of the numerator is less than the degree of the denominator, the limit is \qquad .
- When the degrees of the numerator and the denominator are equal, the limit is the ratio of the coefficients of the highest-powered terms
- When the degree of the numerator is greater than the degree of the denominator, the limit \qquad does not exist \qquad .

What you should learn

How to evaluate limits of functions at infinity

II. Limits of Sequences (Pages 839-840)

For a sequence whose nth term is a_{n}, as n increases without

What you should learn How to find limits of sequences bound, if the terms of the sequence get closer and closer to a particular value L, then the sequence is said to
\qquad to L. Otherwise, the sequence is said to
\qquad

Give the definition of the limit of a sequence.
Let f be a function of a real variable, such that $\lim f(x)=L$.

$$
x \rightarrow \infty
$$

If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then $\lim a_{n}=L$.
$n \rightarrow \infty$

Example 2: Find the limit of the sequence $a_{n}=\frac{(n-3)(4 n-1)}{4-3 n-n^{2}}$. - 4

Homework Assignment

Page(s)
Exercises

