Section 12.4 Limits at Infinity and Limits of Sequences

- **Objective:** In this lesson you learned how to evaluate limits at infinity and find limits of sequences.
- I. Limits at Infinity and Horizontal Asymptotes (Pages 835–838)

Define limits at infinity.

If *f* is a function and L_1 and L_2 are real numbers, the statements $\lim_{x \to -\infty} f(x) = L_1$ and $\lim_{x \to \infty} f(x) = L_2$ denote the limits at infinity.

The first is read "the limit of f(x) as x approaches $-\infty$ is L_1 ," and the second is read "the limit of f(x) as x approaches ∞ is L_2 ."

To help evaluate limits at infinity, you can use the following:

If *r* is a positive real number, then $\lim_{x \to \infty} \frac{1}{x^r} = \underline{0}$.

If x^r is defined when x < 0, then $\lim_{x \to -\infty} \frac{1}{x^r} = \underline{0}$.

Example 1: Find the limit: $\lim_{x \to \infty} \frac{1 + 5x - 3x^3}{x^3}$

If f(x) is a rational function and the limit of f is taken as x approaches ∞ or $-\infty$,

- When the degree of the numerator is less than the degree of the denominator, the limit is 0 .
- When the degrees of the numerator and the denominator are equal, the limit is <u>the ratio of the coefficients of the</u> <u>highest-powered terms</u>.
- When the degree of the numerator is greater than the degree of the denominator, the limit <u>does not</u>
 <u>exist</u>.

Course Number

Date

Instructor

What you should learn How to evaluate limits of functions at infinity

II. Limits of Sequences (Pages 839-840)

For a sequence whose *n*th term is a_n , as *n* increases without bound, if the terms of the sequence get closer and closer to a particular value *L*, then the sequence is said to

<u>converge</u> to *L*. Otherwise, the sequence is said to

diverge

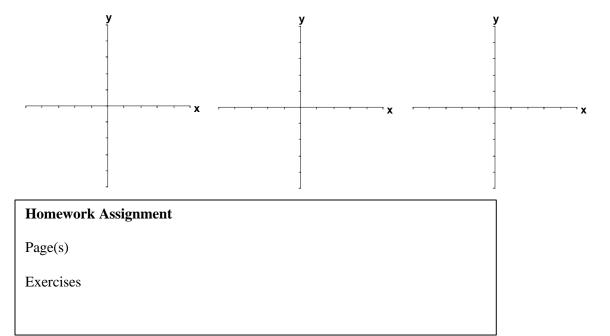
Give the definition of the limit of a sequence.

-4

Let *f* be a function of a real variable, such that $\lim f(x) = L$.

If $\{a_n\}$ is a sequence such that $f(n) = a_n$ for every positive integer n, then $\lim_{n \to \infty} a_n = L$.

Example 2: Find the limit of the sequence $a_n = \frac{(n-3)(4n-1)}{4-3n-n^2}$.



What you should learn How to find limits of sequences