С 10 cm Л 14 cm

Find each measure in *DLMNP*. 10 m 3. ML М 4. LP 62° 32 Q 12 m **5.** m∠*LPM* 6. LN 9 m **7.** m∠*MLN* 8. QN

2. m∠D

110°

Find each measure.

R

1. AB

Reteach

LESSON

Name _____ Date _____ Class _____

LESSON	Reteach		
6-2	Properties of Pa	rallelograms continue	d
You ca	n use properties of paral	lelograms to find measures.	
WXYZ	is a parallelogram. Find	d m∠ <i>X</i> .	$X_{\sqrt{4x^{\circ}}}$
m∠W	$X + m \angle X = 180^{\circ}$	If a quadrilateral is a \Box , then cons. \measuredangle are supp.	$W^{(7x+15)}$
(7 <i>x</i> + 1	$15) + 4x = 180^{\circ}$	Substitute the given values.	
1	1x + 15 = 180	Combine like terms.	
	11 <i>x</i> = 165	Subtract 15° from both sides	S.
	<i>x</i> = 15	Divide both sides by 11.	
m∠ <i>X</i>	$X = (4x)^{\circ} = [4(15)]^{\circ} = 60$	0	

If you know the coordinates of three vertices of a parallelogram, you can use slope to find the coordinates of the fourth vertex.

Three vertices of $\Box RSTV$ are R(3, 1), S(-1, 5), and T(3, 6). Find the coordinates of V.

Since opposite sides must be parallel, the rise and the run from S to R must be the same as the rise and the run from T to V.

From *S* to *R*, you go down 4 units and right 4 units. So, from *T* to *V*, go down 4 units and right 4 units. Vertex *V* is at V(7, 2).

You can use the slope formula to verify that $\overline{ST} \parallel \overline{RV}$.

CDEF is a parallelogram. Find each measure.DE9. CD10. EF11. m $\angle F$ 12. m $\angle E$

15

The coordinates of three vertices of a parallelogram are given. Find the coordinates of the fourth vertex.

13. $\Box ABCD$ with A(0, 6), B(5, 8), C(5, 5)

14. \Box *KLMN* with *K*(-4, 7), *L*(3, 6), *M*(5, 3)

Т

	Dreatics D
LESSON Practice A	
Fill in the blanks to complete each definition or theorem	A gurney is a wheeled cot or stretcher used in hospitals
1. If a quadrilateral is a parallelogram, then its consecutive angles are	Many gurneys are made so that the base will fold up for
supplementary	easy storage in an ambulance. When partially folded, the base forms a parallelogram. In \Box STUV, $VU = 91$ centimeters,
2. If a quadrilateral is a parallelogram, then its opposite sides are <u>congruent or parallel</u>	$UW = 108.8$ centimeters, and m $\angle TSV = 57^{\circ}$. Find each measure.
A parallelogram is a quadrilateral with two pairs of	1. SW 2. TS 3. US
each other.	<u>108.8 cm</u> 91 cm 217.6 cm
5. If a quadrilateral is a parallelogram, then its opposite angles are <u>Congruent</u> .	4. m∠ <i>SVU</i> 5. m∠ <i>STU</i> 6. m∠ <i>TUV</i>
The figure shows a swing blown to one side by a breeze. As long as $\frac{A}{N} = \frac{B}{N}$	<u>123°</u> <u>123°</u> <u>57°</u>
parallelogram. In $\Box ABCD$, $DC = 2$ ft, $BE = 4\frac{1}{2}$ ft, and $m \angle BAD = 75^{\circ}$.	$\frac{L}{(x-9)^{\circ}}M$
Find each measure. $1 \frac{V}{D} \frac{1}{C}$	JKLM is a parallelogram. Find each measure. $1 \frac{1}{2x^{\alpha}}$
6. AB 7. ED 8. BD	7. m∠L 8. m∠K [∧] 9. MJ
2 ft 4 2 ft 9 ft	<u>117°</u> <u>63°</u> <u>71</u>
9. m∠ <i>ABC</i> 10. m∠ <i>BCD</i> 11. m∠ <i>ADC</i>	W 292
<u> 105° </u>	VWXY is a parallelogram. Find each measure.
PQ	21 10.5
PQRS is a parallelogram. Find each measure.	
$S \frac{G}{x+3} R$	15 30
6 100° 80°	
	Find the coordinates of vertex A. $(0, -3)$
Inree veruces of $\Box GHIJ$ are $G(U, U)$, $H(2, 3)$, and $J(6, 1)$. Complete Exercises 15–21 to find the coordinates of vertex <i>I</i> .	Write a two-column proof.
15. Plot vertices <i>G</i> , <i>H</i> , and <i>J</i> on the coordinate plane.	15. Given: $DEFG$ is a parallelogram.
16. Find the rise (difference in the <i>y</i> -coordinates)	Prove. In 2 brid = In 2 con + In 2 con Possible answer: $G = F$
Trom G to H	Statements Reasons
from G to H. 2	2. $m / EDG = m / EDH + m / GDH$. 2. Angle Add. Post.
18. Using your answers from Exercises 16 and 17, add the rise to the y-coordinate of	$m \angle FGD = m \angle FGH + m \angle DGH$
of vertex <i>I</i> . (8,4)	$3. m \angle EDG + m \angle FGD = 180^{\circ}$ $3. \Box \rightarrow \text{cons. } \& \text{supp.}$
19. Plot vertex <i>I</i> . Connect the points to draw $\Box GHIJ$.	$4. \text{ m} \angle EDH + \text{m} \angle GDH + \text{m} \angle FGH + \text{m} \angle DGH = 180^{\circ}$ $5. \text{ m} \angle GDH + \text{m} \angle DGH + \text{m} \angle DHG = 180^{\circ}$ $5. \text{ Triangle Sum Thm}$
20. Check your answer by finding the slopes of <i>IH</i> and <i>JG</i> .	$6. \text{ m} \angle GDH + \text{m} \angle DGH + \text{m} \angle DHG = \text{m} \angle EDH + $ $6. \text{ Trans. Prop. of } =$
slope of $IH = 6$ Stope of $JG = 6$ 21. Barallel lines have equal slopes Are the slopes of \overline{JH} and \overline{JG} equals Ves	$m \angle GDH + m \angle FGH + m \angle DGH$
21. Parallel lines have equal slopes. Are the slopes of <i>In</i> and <i>JG</i> equal?	
All rights reserved.	All rights reserved.
Esson Practice C 622 Properties of Parallelograms The area of a parallelogram is given by the formula A = bh	LESSON Reteach 6-21 Properties of Parallelograms A parallelogram is a quadrilatoral with two pairs of parallel sides 6->>+
EXAMPLA 1 Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. $ABCD$ is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of $EFGH$ is half the area of $ABCD$. Possible answer: The height of ABCD is $2b$ and the length of the base is $2c$, so the area of $ABCD$ is $4bc$. Because $ABCD$ is a parallelogram, $AB = DC$ and $BC = AD$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G , and H are midpoints, $AE = BE = CG = DG$ and $BF = CF = AH = DH$. So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle AEH$ is b and the length of the base is c , so its area is $\frac{1}{2}bc$. The areas of congruent it and the length of the base is c , so its area is $\frac{1}{2}bc$. The height of $\triangle DGH$ is b and the length of the	Reteach Geteach Geteach A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $e f = f = f = f = f = f = f = f = f = f $
EXAMPLA 1 Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. ABCD is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of <i>EFGH</i> is half the area of <i>ABCD</i> . Possible answer: The height of <i>ABCD</i> is 2 <i>b</i> and the length of the base is 2 <i>c</i> , so the area of <i>ABCD</i> is 4 <i>bc</i> . Because <i>ABCD</i> is a parallelogram, <i>AB</i> = <i>DC</i> and <i>BC</i> = <i>AD</i> and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, $AE = BE = CG = DG$ and $BF = CF = AH = DH$. So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle AEH$ is b and the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of <i>COBH</i> is b and the length of the area of $\triangle CGF$ is also $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the area of $\triangle CGF$ is area is $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the area of $\triangle CGF$ is area is $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the lase is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the area of $\triangle CGF$ is also $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the lase is <i>c</i> , so oth area is $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the areas of <i>ACCF</i> is also $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the lase is <i>c</i> , so the area is $\frac{1}{2}bc$. The areas of <i>ADCH</i> is <i>b</i> and the length of the lase is <i>c</i> . So <i>DC</i> arises <i>d</i> is <i>CDCH</i> is <i>b</i> and the length of the areas <i>f CCD</i> arises <i>f</i> and <i>f CDC</i> arises <i>f</i> and <i>f CDC f c f c f c DCD c f c f c d c d c d c d c d c d c d c d c d c d c d c d c d c d c d c</i>	Reteach Essent Properties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. Image: Colspan="2">Image: Colspan="2" Colspan
EXAMPLA 1 Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. ABCD is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of <i>EFGH</i> is half the area of <i>ABCD</i> . Possible answer: The height of <i>ABCD</i> is 2 <i>b</i> and the length of the base is 2 <i>c</i> , so the area of <i>ABCD</i> is a barallelogram. Because <i>ABCD</i> is a parallelogram, <i>AB</i> = <i>DC</i> and <i>BC</i> = <i>AD</i> and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, <i>AE</i> = <i>BE</i> = <i>CG</i> = <i>DG</i> and <i>BF</i> = <i>CF</i> = <i>AH</i> = <i>DH</i> . So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: <i>E(a, b)</i> , <i>F(c</i> + 2 <i>a, 2b)</i> , <i>G(2c</i> + <i>a, b)</i> , <i>H(c, 0)</i> . The height of $\triangle AEH$ is band the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of $\triangle BFF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>EFGH</i> is had the length of the base of $\triangle CGF$ is also $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>EFGH</i> is the area of <i>ABCD</i> minus the area of the triangles, or $4bc - 2bc$. And the area of <i>EFGH</i> is	Reteach Find each measure. Reteach Properties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $f_{\mu} = \int_{\Box}^{H} \frac{1}{G} = \frac{1}{HJ}$ $f_{\mu} = \int_{\Box}^{H} \frac{1}{G} = \frac{1}{HJ}$
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. $ABCD$ is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of <i>EFGH</i> is half the area of <i>ABCD</i> . Possible answer: The height of <i>ABCD</i> is 2b and the length of the base is 2c, so the area of <i>ABCD</i> is a barallelogram, $AB = DC$ and $BC = AD$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G , and H are midpoints, $AE = BE = CG = DG$ and $BF = CF = AH = DH$. So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle \Delta BH$ is band the length of the base is c , so its area is $\frac{1}{2}bc$. The areas of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus $2bc$. The area of $\angle BFH$ is band the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $\angle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus $2bc$. The area of $\angle BFH$ is band the length of the base is c , $b = \frac{1}{2}(4bc) = \frac{1}{2}(area of ABCD)$.	Reteach Figure 1 Properties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $f_{\mu} = \int_{\Box} G = \frac{1}{D} \int_{\Box}$
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. $ABCD$ is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of $EFGH$ is half the area of $ABCD$. Possible answer: The height of ABCD is $2b$ and the length of the base is $2c$, so the area of $ABCD$ is a barallelogram. $Bacause ABCD$ is a parallelogram, $AB = DC$ and $BC = AD$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G , and H are midpoints, $AE = BE = CG = DG$ and $BF = CF = AH = DH$. So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle DGH$ is band the length of the base is c , so its area is $\frac{1}{2}bc$. The areas of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of $ABCH$ is band the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of ABCH is band the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of ABCH is band the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of ABCH is base of the triangles, or $4bc - 2bc = 2bc$. And the area of $EFGH$ is $bc = \frac{1}{2}(4bc) = \frac{1}{2}(area of ABCD)$. 2. Show that $EFGH$ is a parallelogram.	Reteach Figure 1 A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $\begin{array}{c} & & \\ & & $
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. ABCD is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of <i>EFGH</i> is half the area of <i>ABCD</i> Possible answer: The height of <i>ABCD</i> is 2 <i>b</i> and the length of the base is 2 <i>c</i> , so the area of <i>ABCD</i> is 4 <i>bc</i> . Because <i>ABCD</i> is a parallelogram, <i>AB</i> = <i>DC</i> and <i>BC</i> = <i>AD</i> and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, <i>AE</i> = <i>BE</i> = <i>CG</i> = <i>DG</i> and <i>BF</i> = <i>CF</i> = <i>AH</i> = <i>DH</i> . So by SAS, $\triangle AEH$ is congruent to $\triangle CF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: <i>E</i> (<i>a</i> , <i>b</i>), <i>F</i> (<i>c</i> + 2 <i>a</i> , 2 <i>b</i>), <i>G</i> (2 <i>c</i> + <i>a</i> , <i>b</i>), <i>H</i> (<i>c</i> , 0). The height of $\triangle DGH$ is band the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of the <i>BEF</i> is also $\frac{1}{2}bc$. The area of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of the base is <i>c</i> , so its area of $ABCD$ is $ABCD$ is a base. 1. Show that <i>EFGH</i> is a parallelogram. 2. Show that <i>EFGH</i> is a parallelogram. 3. Show that <i>EFGH</i> is a base for the area of <i>ABCD</i> is also <i>i bc</i> . 4. Show that <i>EFGH</i> is a parallelogram. 5. Show that <i>EFGH</i> is a parallelogram. 5. Show that <i>EFGH</i> is a parallelogram.	Reteach Figure Reteach A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $f_{\mu} = \int_{\Box = G}^{H} \frac{1}{GE} = \frac{1}{HJ}$ $G_{\mu} = \int_{\Box = G}^{H} \frac{1}{GE} = \frac{1}{HJ}$ $G_{\mu} = \int_{\Box = G}^{H} \frac{1}{GE} = \frac{1}{HJ}$ Opposite sides are congruent. $G_{\mu} = \int_{\Box = G}^{H} \frac{1}{GE} = \frac{1}{HJ}$ $G_{\mu} = \frac{1}{H}$ $G_{\mu} = \frac{1}{H}$ $G_{\mu} = \frac{1}{H}$ The diagonals bisect each other. Find each measure. 1. AB
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. ABCD is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of <i>EFGH</i> is half the area of <i>ABCD</i> Possible answer: The height of <i>ABCD</i> is 2b and the length of the base is 2c, so the area of <i>ABCD</i> is a parallelogram. <i>ABCD</i> is 2b and the length of the base is 2c, so the area of <i>ABCD</i> is 4bc. Because <i>ABCD</i> is a parallelogram, <i>AB</i> = <i>DC</i> and <i>BC</i> = <i>AD</i> and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, <i>AE</i> = <i>BE</i> = <i>CG</i> = <i>DG</i> and <i>BF</i> = <i>CF</i> = <i>AH</i> = <i>DH</i> . So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: <i>E(a, b)</i> , <i>F(c</i> + 2a, 2b), <i>G(2c</i> + a, b), <i>H(c</i> , 0). The height of $\triangle DGH$ is band the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of <i>CDF</i> is also $\frac{1}{2}bc$. The area of all <i>ABEF</i> is congruent to the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all <i>ABEF</i> is and the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of all four triangles is the side. The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of all four triangles is the side of <i>ABCD</i> . 2 . Show that <i>EFGH</i> is a parallelogram. Possible answer: Use the slope formula to find the slope of each side: slope of $\overline{EF} = \frac{b}{a+c}$, slope of $\overline{GH} = \frac{b}{a+c}$, slope of $\overline{FG} = \frac{b}{a-c}$, slope of \overline{EH}	Reteach Properties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $f = \int_{\Box}^{H} G = HJ$ G = HJ G = HJ
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where <i>A</i> is the area, <i>b</i> is the length of a base, and <i>h</i> is the height perpendicular to the base. <i>ABCD</i> is a parallelogram. <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are the midpoints of the sides. 1. Show that the area of <i>EFGH</i> is half the area of <i>ABCD</i> Possible answer: The height of <i>ABCD</i> is 2 <i>b</i> and the length of the base is 2 <i>c</i> , so the area of <i>ABCD</i> is a barallelogram. <i>AB = DC</i> and <i>BC = AD</i> and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, <i>AE = BE = CG = DG</i> and <i>BF = CF = AH = DH</i> . So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: <i>E(a, b)</i> , <i>F(c + 2a, 2b)</i> , <i>G(2c + a, b)</i> , <i>H(c, 0)</i> . The height of $\triangle DGH$ is band the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of <i>CDF</i> is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of <i>ABCD</i> his band the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>ABEF</i> is also $\frac{1}{2}bc$. The area of all four triangles is the solope formula to find the solope of each side: slope of <i>EF</i> = $\frac{b}{a+c}$, slope of <i>GH</i> = $\frac{b}{a+c}$, slope of <i>FG</i> = $\frac{b}{a-c}$, slope of <i>EH</i> = $\frac{b}{a-c}$. Segments with equal slopes are parallel, so <i>EF</i> is parallel to <i>GH</i>	Reteach Properties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $f = \int_{\Box}^{H} G = HJ$ G = HJ G = HJ G = HJ G = G = HJ G = HJ
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. ABCD is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of EFGH is half the area of ABCD. Possible answer: The height of ABCD is 2b and the length of the base is 2c, so the area of ABCD is 4bc. Because ABCD is a parallelogram, $AB = DC$ and $BC = AD$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G , and H are midpoints, $AE = BE = CG = DG$ and $BF = CF = AH = DH$. So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle AEH$ is band the length of the base is c, so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of BEF is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}bc$. The area of BEF is also $\frac{1}{2}$	Reteach Properties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. A parallelograms, such as $\Box FGHJ$, have the following properties. All parallelograms, such as $\Box FGHJ$, have the following properties. Image: Colspan="2">Image: Colspan="2" Time transmission of the transmission of
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where <i>A</i> is the area, <i>b</i> is the length of a base, and <i>h</i> is the height perpendicular to the base. <i>ABCD</i> is a parallelogram. <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are the midpoints of the sides. Solution <i>ABCD</i> is 2 <i>b</i> and the length of the base is 2 <i>c</i> , so the area of <i>ABCD</i> is 4 <i>bc</i> . Because <i>ABCD</i> is a parallelogram, <i>AB</i> = <i>DC</i> and <i>BC</i> = <i>AD</i> and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, <i>AE</i> = <i>BE</i> = <i>CG</i> = <i>DG</i> and <i>BF</i> = <i>CF</i> = <i>AH</i> = <i>DH</i> . So by SAS, $\triangle AEH$ is congruent to $\triangle CF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: <i>E</i> (<i>a</i> , <i>b</i>), <i>F</i> (<i>c</i> + 2 <i>a</i> , 2 <i>b</i>), <i>G</i> (2 <i>c</i> + <i>a</i> , <i>b</i>), <i>H</i> (<i>c</i> , 0). The height of $\triangle AEH$ is <i>b</i> and the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of <i>COGH</i> is <i>b</i> and the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>ABCH</i> is the area of <i>ABCD</i> minus the area of the triangles, or 4 <i>bc</i> - 2 <i>bc</i> = 2 <i>bc</i> . And the area of <i>ABCD</i> minus the area of the triangles, or 4 <i>bc</i> - 2 <i>bc</i> = 2 <i>bc</i> . And the area of <i>ABCD</i> minus the area of the solution of <i>GH</i> = $\frac{b}{a+c}$, slope of <i>FG</i> = $\frac{b}{a-c}$, slope of <i>EH</i> = $\frac{b}{a-c}$. Segments with equal slopes are parallelogram. Mr. Nguyen is blessed (or cursed) with an abundance of books. They litter his aparallel to <i>EH</i> . Therefore <i>EFGH</i> is a parallelogram.	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. Image: superior of parallelograms Image: superior of parallelograms Image: superior of
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where <i>A</i> is the area, <i>b</i> is the length of a base, and <i>h</i> is the height perpendicular to the base. <i>ABCD</i> is a parallelogram. <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are the midpoints of the sides. Solution ABCD is 2 <i>b</i> and the length of the base is 2 <i>c</i> , so the area of <i>ABCD</i> is 4 <i>bc</i> . Because <i>ABCD</i> is a parallelogram, <i>AB</i> = <i>DC</i> and <i>BC</i> = <i>AD</i> and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, <i>AE</i> = <i>BE</i> = <i>CG</i> = <i>DG</i> and <i>BF</i> = <i>CF</i> = <i>AH</i> = <i>DH</i> . So by SAS, $\triangle AEH$ is congruent to $\triangle CF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: <i>E(a, b)</i> , <i>F(c</i> + 2 <i>a, 2b)</i> , <i>G(2c</i> + <i>a, b)</i> , <i>H(c</i> , 0). The height of $\triangle AEH$ is band the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of <i>ADGH</i> is <i>b</i> and the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2 <i>bc</i> . The area of <i>ABCH</i> is the area of <i>ABCD</i> minus the area of the triangles, or 4 <i>bc</i> - 2 <i>bc</i> = 2 <i>bc</i> . And the area of <i>ABCD</i> minus the area of the signard. Base is <i>c</i> , so its area is $\frac{1}{2}bc$. The area of <i>ABEF</i> is the area of <i>ABCD</i> minus the area of the signard. Base is <i>c</i> , so preserve the slope formula to find the slope of each side: slope of $\overline{EF} = \frac{b}{a+c}$, slope of $\overline{GH} = \frac{b}{a+c}$, slope of $\overline{FG} = \frac{b}{a-c}$, slope of \overline{EH} $= \frac{b}{a-c}$. Segments with equal slopes are parallelogram. M : Nguyen is blessed (or cursed) with an abundance of books. They litter his apartment. Mr. Nguyen is trying to clean up his living room, so he bought a new three-shelf bookcase. Each shelf is $\frac{1}{2}$ feet long. 3 . Mr. Nguyen measures a few books and finds the vareare $\frac{1}{2}$ inch thick	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. Image: superior of parallelograms Image: superior of parallelograms Image: superior of
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. $ABCD$ is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of $EFGH$ is half the area of $ABCD$. Possible answer: The height of ABCD is $2b$ and the length of the base is $2c$, so the area of $ABCD$ is a barallelogram. $AB = DC$ and $BC = AD$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G , and H are midpoints, $AE = BE = CG = DG$ and $BF = CF = AH = DH$. So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle AEH$ is band the length of the base is c , so its area is $\frac{1}{2}bc$. The areas of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of $ABCD$ minus the area of $\triangle CGF$ is also $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus $2bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus $2bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of $ABCD$ minus the area of the triangles, or $4bc - 2bc = 2bc$. And the area of $ABCD$ minus the area of $ABCD$ is a parallelogram. Possible answer: Use the slope formula to find the slope of each side: slope of $\overline{EF} = \frac{b}{a+c}$, Slope of $\overline{GH} = \frac{b}{a+c}$, Slope of $\overline{FG} = \frac{b}{a-c}$, slope of \overline{EH} $= \frac{b}{a-c}$. Segments with equal slopes are parallelogram. Mr. Nguyen is blessed (or cursed) with an abundance of books. They litter his apartment. Mr. Nguyen measures a few books and finds they average $1\frac{1}{8}$ inch thick. Calculate the maximum number of books Mr. Nguyen can fit on the bookcase. <u>80 books</u>	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. Image: superior of parallelograms Image: superior of parallelograms Image: superior of
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the area, b is the length of a base, and h is the height perpendicular to the base. $ABCD$ is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of $EFGH$ is half the area of $ABCD$. Possible answer: The height of ABCD is $2b$ and the length of the base is $2c$, so the area of $ABCD$ is $4bc$. Because $ABCD$ is a parallelogram, $AB = DC$ and $BC = AD$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G , and H are midpoints, $AE = BE = CG = DG$ and $BF = cCF = AH = DH$. So by SAS , $\triangle AEH$ is congruent to $\triangle CFF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle DAEH$ is b and the length of the base is c , so its area is $\frac{1}{2}bc$. The areas of $ABCF$ is also $\frac{1}{2}bc$. The area of $ABCD$ is $bach$. Because the triangles, $c + 2bc = 2bc$. And the length of the base is c , so its area is $\frac{1}{2}bc$. The height of $\triangle DGH$ is b and the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $ABEF$ is also $\frac{1}{2}bc$. The area of $ABCD$ minus the area of the triangles, $c + 4bc - 2bc = 2bc$. And the area of $ABCD$ minus the area of the triangles, $c + 4bc - 2bc = 2bc$. And the area of $ABCD$ minus the area of the triangles, $c + 4bc - 2bc = 2bc$. And the area of $EFGH$ is $2bc = \frac{1}{2}(4bc) = \frac{1}{2}(area of ABCD)$. 2. Show that $EFGH$ is a parallelogram. Possible answer: Use the slope formula to find the slope of each side: slope of $\overline{EF} = \frac{b}{a+c}$, slope of $\overline{GH} = \frac{b}{a+c}$, slope of $\overline{FG} = \frac{b}{a-c}$, slope of $\overline{EH} = \frac{b}{a-c}$. Segments with equal slopes are parallel, so \overline{EF} is parallel to \overline{GH} and \overline{FG} is parallel to \overline{EH} . Therefore $EFGH$ is a parallelogram. Mr. Nguyen is blessed (or cursed) with an abundance of books. They litter	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $F = \Box HJ$ $F = \Box HJ$ $Properties of Parallelograms F \subseteq \Box HJ F \subseteq \Box HJ F \subseteq \Box HJ Properties of Parallelograms F \subseteq \Box HJ F \subseteq \Box HJ G \subseteq \Box J Opposite sides are congruent. Opposite angles are congruent. P \subseteq HJ = HJ P \subseteq \Box HJ P \subseteq HJ = HJ P \subseteq \Box HJ P \subseteq HJ = HJ P \subseteq \Box HJ P \subseteq HJ = HJ P \subseteq $
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the length of a base, and h is the height perpendicular to the base. $ABCD$ is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of $EFGH$ is half the area of $ABCD$. Possible answer: The height of ABCD is $2b$ and the length of the base is $2c$, so the area of $ABCD$ is $4bc$. Because $ABCD$ is a parallelogram, $AB = DC$ and $BC = AD$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G , and H are midpoints, $AE = BE = CG = DG$ and $BF = CF = AH = DH$. So by SAS , $\triangle AEH$ is congruent to $\triangle CFF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: $E(a, b), F(c + 2a, 2b),$ $G(2c + a, b), H(c, 0)$. The height of $\triangle DAGH$ is b and the length of the base is c , so its area is $\frac{1}{2}bc$. The areas of CBF is also $\frac{1}{2}bc$. The area of $ABCD$ is b and the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of $ABCD$ is b and the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of $ABCD$ is b and the length of the base is c , so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of $ABCD$ is $2bc = \frac{1}{2}(4bc) = \frac{1}{2}(area of ABCD)$. 2. Show that $EFGH$ is a parallelogram. Possible answer: Use the slope formula to find the slope of each side: slope of $\overline{EF} = \frac{b}{A-c}$, slope of $\overline{GH} = \frac{b}{A+c}$, slope of $\overline{FG} = \frac{b}{A-c}$, slope of $\overline{EH} = \frac{b}{A-c}$. Segments with equal slopes are parallel, so \overline{EF} is parallel to \overline{GH} and \overline{FG} is parallel to \overline{EH} . Therefore $EFGH$ is a parallelogram. Mr. Nguyen is blessed (or cursed) with an abundance of books. They litter his apartment. Nk. Nguyen is the issues a book by pushing back on the front cover; the book gets thinner. Mr. Nguyen finds that i	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. A parallelograms, such as $\Box FGHJ$, have the following properties. All parallelograms, such as $\Box FGHJ$, have the following properties. f_{μ} Image: the parallelograms is a quadrilateral with two pairs of parallel sides. f_{μ} Image: the parallelograms is a quadrilateral with two pairs of parallelograms f_{μ} Image: the parallelograms is a construction of the parallelograms. Image: the parallelograms is a construction of the parallelograms is a construction of the parallelograms. Image: the parallelograms is a construction of the parallelograms. Image: the parallelograms is a construction of the parallelogram is constructin of the parallelogram is a construction of
 Practice C Properties of Parallelograms The area of a parallelogram is given by the formula A = bh, where A is the area, b is the length of a base, and h is the height perpendicular to the base. ABCD is a parallelogram. E, F, G, and H are the midpoints of the sides. 1. Show that the area of EFGH is half the area of ABCD. Possible answer: The height of ABCD is a parallelogram, AB = DC and BC = AD and ∠A is congruent to ∠C and ∠B is congruent to ∠CB and bEF = CF = AH = DH. So by SAS, △AEH is congruent to △CGF and △BEF is congruent to △C and ∠B is congruent to △CGF and △BEF is congruent to △CGF. AND AD AD	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties. $\downarrow_{\Box} FGHJ$ Properties of Parallelograms $\downarrow_{\Box} FG = HJ$ $\downarrow_{\Box} F = \angle H$ $\bigcirc_{\Box} fH = HD$ $\bigcirc_{\Box} fH = HD$ $\bigcirc_{\Box} fH = HZ = 180^{\circ}$ $\bigcirc_{\Box} fH = HD$ $\square_{\Box} fH = m\angle G = 180^{\circ}$ $\square_{\Box} fH = m\angle G = 180^{\circ}$ $\square_{\Box} fH = m\angle G + m\angle H = 180^{\circ}$ $\square_{\Box} fH = HD$ $\square_{\Box} fH = m\angle G + 180^{\circ}$ $\square_{\Box} fH = HD$ $\square_{\Box} fH = m\angle fH = 180^{\circ}$ $\square_{\Box} fH = HD$ Consecutive angles are supplementary. The diagonals bisect each other. Find each measure. 1. AB $\square_{\Box} fD = MD$ $\square_{\Box} fD = MD$ $\square_{D} fD = MD$ $\square_{I \pm m}$ $\square_{I \pm m}$ $\square_{I \pm m} fD = MD$ $\square_{I \pm m}$
 Practice C Properties of Parallelograms The area of a parallelogram is given by the formula A = bh, where A is the area, b is the length of a base, and h is the height perpendicular to the base. ABCD is a parallelogram. E, F, G, and H are the midpoints of the sides. Above that the area of EFGH is half the area of ABCD. Possible answer: The height of ABCD is a parallelogram, AB = DC and BC = AD and ∠A is congruent to ∠C and ∠B is congruent to ∠CBF and △BEF is congruent to △C and ∠B is congruent to △CF and △BEF is congruent to △CA and ∠A is congruent to ∠C and ∠B is congruent to △CGF and △BEF is congruent to △CBGH. Now find the coordinates of the midpoints: E(a, b), F(c + 2a, 2b), G(2c + a, b), H(c, 0). The height of △AEH is b and the length of the base is c, so its area is ½bc. The areas of congruent triangles are equal, so the area of △CGF is also ½bc. The areas of △DGH is b and the length of the base is c, so its area is ½bc. The area of △BEF is also ½bc. The area of △BEF is also ½bc. The area of all four triangles is thus 2bc. The area of △BEF is also ½bc. The area of a BEF is congruent to a the length of the base is c, so its area is ½bc. The area of △BEF is also ½bc. The area of all four triangles is thus 2bc. The area of △BEF is also ½bc. The area of all four triangles is thus 2bc. The area of △BEF is also ½bc. The area of BEF is also ½bc. The	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. A parallelograms, such as $\Box FGHJ$, have the following properties. All parallelograms, such as $\Box FGHJ$, have the following properties. $\int_{\mu}^{\mu} \int_{\Box = \mu}^{\mu} \int_{\Box = \mu}^{\mu} \frac{FG}{GF} = \frac{HJ}{JF}$ Opposite sides are congruent. $\int_{\mu}^{\mu} \int_{\Box = \mu}^{\mu} \int_{\Box = \mu}^{HJ} \frac{G}{GF} = \frac{180^{\circ}}{J}$ $G_{\mu}^{\mu} \int_{\Box = \mu}^{\mu} \int_{\Box = \mu}^{HJ} \frac{G}{GF} = \frac{2}{JP}$ Opposite sides are congruent. $\int_{\mu}^{\mu} \int_{\Box = \mu}^{HJ} \int_{\Box = \mu}^{HJ} \frac{G}{GF} = \frac{180^{\circ}}{JP}$ $G_{\mu}^{\mu} \int_{\Box = \mu}^{HJ} \frac{FP}{GF} = \frac{HP}{JP}$ Opposite angles are congruent. $\int_{\mu}^{H} \int_{\Box = \mu}^{HJ} \frac{FP}{GF} = \frac{HP}{JP}$ The diagonals bisect each other. Find each measure. 1. AB $\int_{\Box = \mu}^{HJ} \int_{\Box = \mu}^{0} \frac{10 \text{ m}}{DG^{\circ}}$ $\int_{A}^{H_{D}^{0}} \frac{10^{\circ}}{DF} = \frac{10^{\circ}}{JP}$ S. ML 4. LP $\int_{A}^{H_{D}^{0}} \frac{10^{\circ}}{DF} = \frac{10^{\circ}}{P}$ $\int_{B}^{0} \frac{10^{\circ}}{DF} = \frac{10^{\circ}}{P}$ $\int_{$
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where <i>A</i> is the area, <i>b</i> is the length of a base, and <i>h</i> is the height perpendicular to the base. <i>ABCD</i> is a parallelogram. <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are the midpoints of the sides. Show that the area of <i>EFGH</i> is half the area of <i>ABCD</i> . Possible answer: The height of <i>ABCD</i> is 2 <i>b</i> and the length of the base is 2 <i>c</i> , so the area of <i>ABCD</i> is a barallelogram. <i>AB</i> = <i>DC</i> and <i>BC</i> = <i>AD</i> and <i>A A</i> is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because <i>E</i> , <i>F</i> , <i>G</i> , and <i>H</i> are midpoints, <i>AE</i> = <i>BE</i> = <i>CG</i> = <i>DG</i> and <i>BF</i> = <i>CF</i> = <i>AH</i> = <i>DH</i> . So by SAS, $\triangle AEH$ is congruent to $\triangle CF$ and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: <i>E</i> (<i>a</i> , <i>b</i>), <i>F</i> (<i>c</i> + 2 <i>a</i> , 2 <i>b</i>), <i>G</i> (2 <i>c</i> + <i>a</i> , <i>b</i>), <i>H</i> (<i>c</i> , 0). The height of $\triangle AEH$ is <i>b</i> and the length of the base is <i>c</i> , so its area is $\frac{1}{2}bc$. The areas of congruent triangles are equal, so the area of $\triangle CGF$ is also $\frac{1}{2}bc$. The area of $\triangle BEF$ is the area of <i>ABCD</i> minus the area of the triangles, or 4 <i>bc</i> - 2 <i>bc</i> = 2 <i>bc</i> . And the area of <i>ABCD</i> minus the area of the triangles, or 4 <i>bc</i> - 2 <i>bc</i> = 2 <i>bc</i> . And the area of <i>EFGH</i> is $2bc = \frac{1}{2}(4bc) = \frac{1}{2}(area of ABCD).$ 2. Show that <i>EFGH</i> is a parallelogram. Must be the slope formula to find the slope of each side: slope of <i>EF</i> = $\frac{b}{a+c}$, slope of <i>GH</i> = $\frac{b}{a+c}$, slope of <i>FG</i> = $\frac{b}{a-c}$, slope of <i>EH</i> $= \frac{b}{a-c}$. Segments with equal slopes are parallel, so <i>EF</i> is parallel to <i>GH</i> and <i>FG</i> is parallel to <i>EH</i> . Therefore <i>EFGH</i> is a parallelogram. Musupen measures a few books and finds they areage $1\frac{1}{8}$ linch thick. Calculate the maximum number of books Mr. Nguyen can fit on the bookcase. 80 books 1 M. Nguyen finds that if he stresses a book by pushing back on the front cover, the book gives $1^{\pm}in$. \square	Reteach Forperties of Parallelograms A parallelogram is a quadrilateral with two pairs of parallel sides. A parallelograms, such as $\Box FGHJ$, have the following properties. Image: the second colspan="2">Image: the second colspan="2" Image:
Practice C Properties of Parallelograms The area of a parallelogram is given by the formula $A = bh$, where A is the length of a base, and h is the height perpendicular to the base. <i>ABCD</i> is a parallelogram. $E, F, G, and H are the midpoints of the sides. 1. Show that the area of EFGH is half the area of ABCD. Possible answer: The height of ABCD is 2b and the length of the base is 2c, so the area of ABCD is 2b and the length of the base is 2c, so the area of ABCD is 4bc. Because ABCD is a parallelogram, AB = DC and BC = AD and \angle A is congruent to \angle CGH is congruent to \angle CF = AH = DH.So by SAS, \triangle AEH is congruent to \triangle CF and \triangle BEF is congruent to \triangle DGH.Now find the coordinates of the midpoints: E(a, b), F(c + 2a, 2b), G(2c + a, b), H(c, 0). The height of \triangle AEH is b and the length of the base is c, so its area is \frac{1}{2}bc. The area of ABCD is a bart the length of the base is c, so its area is \frac{1}{2}bc. The area of ABCP is also \frac{1}{2}bc. The height of \triangle DGH is b and the length of the base is c, so its area is \frac{1}{2}bc. The area of ABCP is also \frac{1}{2}bc. The area of ABCP is bard the length of the base is c, so its area is \frac{1}{2}bc. The area of ABCP is also \frac{1}{2}bc. The area of ABCP is bard the length of the base is c, so its area is \frac{1}{2}bc. The area of ABCP is also \frac{1}{2}bc. The area of ABCP is a parallelogram.1. Show that EFGH is a parallelogram.1. Show that EFGH is a parallelogram.1. Show that EFGH is a parallelogram.1. Show that BEFGH is a parallelogram.1. Show that the solut a solut a bundance of books. They litter his aparallel to \overline{GH} = \frac{b}{a-c}. Sugments with equal slopes are parallel, so \overline{EF} is parallel to \overline{GH} = \frac{a-c}{a-c$	Reteach Find each measure 1. AB M M M M M M M M

