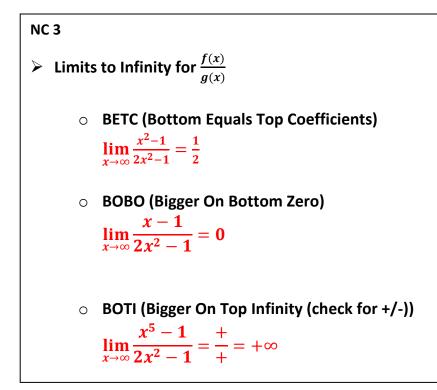
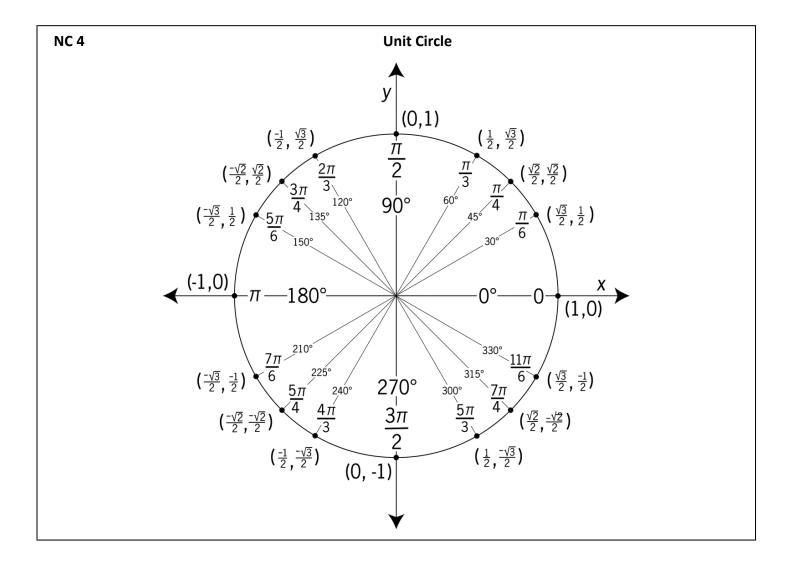
> For a limit to exist, the left-handed limit must equal the right sided limit

 $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L$

- A function can have a limit at x = c even if there is a hole in the graph at that point. (Limit means "what y-value are you approaching?"
- Sraphically, $\lim_{x\to\infty} f(x) = k$ is a horizontal asymptote of the graph.
- > Graphically, $\lim_{x\to c} f(x) = \infty$ is a vertical asymptote of the graph.

NC 2 Algebraically, to find a limit, $\lim_{x \to c} f(x)$, PLUG IN *c*, and that is your limit $Ex: \lim_{x \to 2} \frac{x^2 - 1}{x - 1} = \frac{3}{1} = 3$ If you plug in and get $\frac{0}{0}$, there is a hole at x = c. Factor, cancel, and plug in---OR use L'Hospital's Rule and plug in $Ex: \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0}$ L'HRule: $\frac{2x}{1} = 2x = 2(1) = 2$ If you plug in and get $\frac{\#}{0}$, there is a vertical asymptote at x = c. To find the direction, plug in values very close to x on either side to find out which infinity the graph is going. $Ex: \lim_{x \to 1} \frac{x^2 - 2}{x - 1} = \frac{-1}{0}$ DNE (you get + ∞ on left and - ∞ on right)





Definition of Continuity at a Point: A function f is continuous at a point c if: (1) f(c) is defined

- (2) $\lim_{x \to c} f(x)$ exists
- $(3) \lim_{x \to c} f(x) = f(c)$

NC 6

- Average Rate of Change (AROC) = slope of secant line = slope between two points = $\frac{f(b)-f(a)}{b-a}$
- Instantaneous Rate of Change (IROC) = slope of tangent line = slope at one point = f'(x).
- AROC can be used to "estimate IROC at x = c"

Ex: 1) For $f(x) = 1 - 3x^2$, find AROC on [-1,1]. Then find IROC at x = 3. AROC = 0 IROC = -18

2) For the chart below, find AROC between t = 22 and t = 26. AROC = $\frac{29-11}{26-22} = \frac{18}{4} = \frac{9}{2}$

3) For the chart below, find IROC at x = 27. Must use AROC to estimate: $\frac{29-18}{28-26} = \frac{11}{2}$

t	20	22	24	26	28	30
f(t)	5	7	11	18	29	45

NC 5

NC 7 Notations and expressions for finding the derivative: y' $\frac{dy}{dx}$ or $\frac{d}{dx}$ f'(x) IROC Slope of tangent lineDifferentiate

NC 8

- > Writing an equation for a tangent line: $y y_1 = m(x x_1)$
- m = slope = derivative=f '(x)
- \succ (x_1 , y_1) is a point on f(x)
- > To find y_1 , plug x into f(x)

Techniques of Differentiation

o If
$$f(x) = k$$
, then $f'(x) = 0$.
o If $f(x) = kx$, then $f'(x) = k$.
o If $f(x) = x^n$, then $f'(x) = nx^{n-1}$
o If $h(x) = f(x)g(x)$, then $h'(x) = f'(x)g(x) + g'(x)f(x)$
o If $h(x) = \frac{f(x)}{g(x)}$, then $h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}$
o If $h(x) = f(g(x))$, then $h'(x) = f'(g(x)) \cdot g'(x)$
o If $f(x) = lnx$, then $f'(x) = \frac{1}{x}$
o If $f(x) = ln u$, then $f'(x) = \frac{1}{u} \cdot \frac{du}{dx}$
o If $f(x) = e^x$, then $f'(x) = e^x$
o If $f(x) = e^u$, then $f'(x) = e^u \cdot \frac{du}{dx}$

NC 10 Trig Derivatives $\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\tan x) = \sec^2 x$ $\frac{d}{dx}(\csc x) = -\csc x \cot x$ $\frac{d}{dx}(\sec x) = \sec x \tan x$ $\frac{d}{dx}(\cot x) = -\csc^2 x$

- ➢ If s(t) is the position of an object, then s'(t) = v(t) = velocity.
- > The velocity, v(t), is the rate of change (slope) of the position, s(t).
 - $\circ~$ If v(t) > 0, the object is moving right or up
 - \circ If v(t) < 0, the object is moving left or down
 - If v(t) = 0, the object is stationary/has stopped
- > Velocity tells the speed and direction of the object.
- > Speed = |v(t)|

NC 12

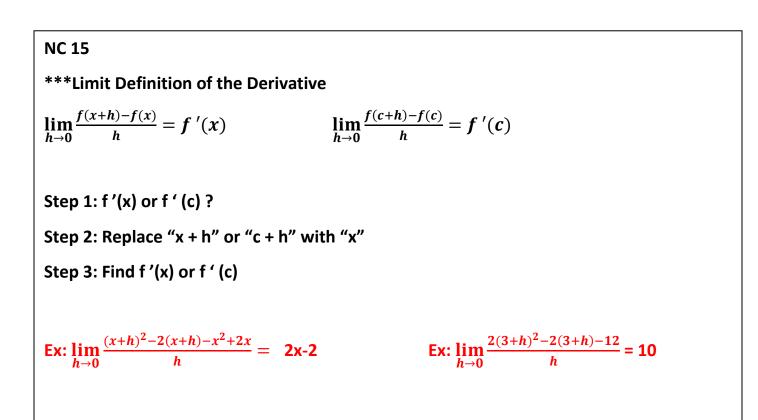
- ➢ If s(t) is the position of an object, then s''(t) = v'(t) = acceleration.
- > The acceleration, a(t), is the rate of change (slope) of the velocity, v(t).
 - If a(t) > 0, the object is being pushed forward
 - If a(t) < 0, the object is being pulled backwards
- \succ An objects speed increases when a(t) and v(t) have the SAME signs.
- \succ An objects speed decreases when a(t) and v(t) have DIFFERENT signs.

NC 13

- > Differentiability implies continuity, but continuity doesn't imply differentiability.
- Types of functions that are continuous, but not differentiable: CUSP, CORNER, VERTICAL TANGENT
- To check differentiability, first use the definition of continuity. If the function is continuous, then check definition of differentiability (same rules as continuity except use derivatives)

Log/Exponential Rules

> $e^0 = 1$ > ln1 = 0> $e^{lnx} = x$ (ex: $e^{ln6} = 6$)----remember e and ln cancel out! > $lne^x = x$ (ex: $lne^9 = 9$)---remember e and ln cancel out



NC 16

**L'Hospital's Rule:

CURCE REVIEW OF EMOPTIALS RELE $\frac{\lim_{x \to c} \frac{f(x)}{g(x)}}{\lim_{x \to c} \frac{f'(x)}{g'(x)}} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$ $\inf \frac{0}{0} \text{ or } \frac{\infty}{\infty}$

NC 17 Increasing/Decreasing Behavior of f(x) & Relative Extrema Find the critical values (where f ' (x) = 0 or f ' (x) is undefined Use a Number Line Analysis to evaluate f ' (x) on both sides of the critical values If f ' (x) > 0, then f(x) is increasing If f ' (x) < 0, then f(x) is decreasing If f ' (x) = 0, then f(x) has a horizontal tangent (min, max, or layout) If f ' (x) is undefined, then f(x) has a cusp, corner or vertical tangent A relative maximum happens where the graph goes from increasing to decreasing on either side of a critical value A relative minimum happens where the graph goes from decreasing to increasing on either side of a critical value

NC 18

Concavity of f(x)

- Find where f " (x) = 0 or f " (x) is undefined
- Use a Number Line Analysis to evaluate f "(x) on both sides
- If f " (x) > 0, then f(x) is concave up
- If f " (x) < 0, then f(x) is concave down
- If f " (x) = 0 or is undefined, there is a possible point of inflection
- A point of inflection happens only when there is a change from ccu to ccd, or vice versa

2nd Derivative Test

- > If f ' (a) = 0 and f " (a) > 0, then x = a is a relative minimum.
- > If f ' (a) = 0 and f " (a) < 0, then x = a is a relative maximum.
- If f ' (a) = 0 and f " (a) = 0, then the test is inconclusive and you would need to use the first derivative number line to determine if the point was a max or min.

