\qquad
\qquad Date \qquad

Skills Worksheet

Directed Reading

Section: Formation of the Solar System

1. The sun and all of the planets and other bodies that revolve around it make up the \qquad
2. Any primary body that orbits the sun, or a similar body that orbits another star, is called $a(n)$ \qquad _.
3. In 1796, the French mathematician Pierre-Simon, marquis de Laplace, advanced the \qquad to explain the origins of the solar system.

THE NEBULAR HYPOTHESIS

\qquad 4. Laplace's hypothesis states that the sun and the planets condensed at about the same time out of a rotating cloud of dust and gas called a
a. planet.
b. nebula.
c. supernova.
d. solar system.
\qquad 5. The rotating cloud of dust and gas from which our solar system is thought to have formed is called the
a. solar nebula.
b. gas giant.
c. sun.
d. nova
\qquad 6. Energy from collisions and pressure from gravity caused the center of the solar nebula to become
a. hotter and less dense.
b. cooler and denser.
c. cooler and less dense.
d. hotter and denser.
7. Which of the following formed when the temperature at the center of the nebula reached about $10,000,000^{\circ} \mathrm{C}$ and hydrogen fusion began?
a. Mars
b. Earth
c. the sun
d. the moon
\qquad Class \qquad Date \qquad
Directed Reading continued
\qquad 8. How much of the matter that was contained in the solar nebula makes up the sun?
a. 5%
b. about 99%
c. 25%
d. about 75\%

FORMATION OF THE PLANETS

9. Small bodies from which a planet originated in the early development of the solar system are called
a. atmospheres.
b. planetesimals.
c. suns.
d. moons.
10. Some planetesimals joined together through collision and through the force of gravity to form larger bodies called
a. protoplanets.
b. sunspots.
c. protons.
d. nebulas.
11. The smaller bodies that orbit the planets are called
a. solar nebulas.
b. moons.
c. planetesimals.
d. suns.
12. Why are Mercury, Venus, Earth, and Mars called the inner planets?
13. Why did the inner planets, which contained large percentages of heavy elements such as iron and nickel, lose their less dense gases?
\qquad
\qquad
14. How do the surfaces of the inner planets compare with that of Earth today?
\qquad
\qquad
15. How do the inner planets differ from the outer planets?
\qquad Class \qquad Date \qquad
Directed Reading continued
16. Jupiter, Saturn, Uranus, and Neptune are referred to as
\qquad planets.
17. How did distance from the sun affect the formation of the outer planets?
\qquad
\qquad
\qquad
18. Name the three reasons why the outer planets are referred to as gas giants.
\qquad
\qquad
\qquad
19. Which outer planet is farthest from the sun?
\qquad
\qquad
20. In what way does Pluto differ from the other outer planets?
\qquad
\qquad
21. In what way is Pluto similar to the other outer planets?
\qquad
\qquad
22. Why do many scientists believe that Pluto should not be classified as a major planet?
\qquad
\qquad

FORMATION OF SOLID EARTH

23. When Earth formed, its high temperature was NOT due to
a. heat produced when planetesimals collided with one another.
b. heat generated when the increasing weight of its outer layers compressed its inner layers.
c. the conversion of moving radioactive particles into heat energy.
d. an irregular orbit that brought it closer to the sun.
\qquad
\qquad Date \qquad
Directed Reading continued
24. Dense materials such as molten iron sank to Earth's center and less dense materials were forced to the outer layers in a process called
a. distinction.
b. differentiation.
c. distribution.
d. delineation.
25. Which of the following did NOT form as one of Earth's layers when differentiation occurred?
a. core
b. mantle
c. atmosphere
d. crust
26. Which of the following elements is NOT present in large amounts in Earth's three layers?
a. gold
b. iron
c. silica
d. magnesium
27. Earth's surface continued to change as a result of
a. increasing radiation.
b. colliding planetesimals.
c. the heat in Earth's interior.
d. hydrogen fusion.

FORMATION OF EARTH'S ATMOSPHERE

28. The original atmosphere of Earth consisted of
a. oxygen and nitrogen.
b. hydrogen and helium.
c. nitrogen and helium.
d. hydrogen and oxygen.
29. Today, hydrogen and helium occur mainly in the
a. oceans.
b. middle atmosphere.
c. lower atmosphere.
d. upper atmosphere.
30. Earth's early atmosphere formed when volcanic eruptions released gases in a process called
a. outgassing.
b. atmospheric composition.
c. air generation.
d. layering.
\qquad Class \qquad Date \qquad
Directed Reading continued
31. What is the molecule that contains three oxygen atoms and collects in Earth's upper atmosphere called?
a. oxygen
b. argon
c. ozone
d. carbon dioxide
32. Some of Earth's early organisms, such as cyanobacteria and early green plants, used \qquad during photosynthesis.
33. Which byproduct of photosynthesis was released into the atmosphere?
\qquad
\qquad
34. When did the chemical composition of Earth's atmosphere reach that of today?
\qquad
\qquad
35. What is the present chemical composition of Earth's atmosphere?
\qquad
\qquad
36. How did Earth's first oceans form?
\qquad
\qquad
37. Comet collisions may have contributed a significant amount of
\qquad to Earth's surface.
38. The first ocean was probably made of \qquad water.
39. The concentration of certain \qquad in the oceans increased as rainwater dissolved rocks on land and carried these dissolved solids into the oceans.
40. When ocean water evaporated, chemicals in the ocean combined to form
\qquad _.
41. Earth's atmosphere and surface cooled because ocean water also dissolved much of the \qquad in the atmosphere.
\qquad
\qquad Date \qquad

Skills Worksheet

Directed Reading

Section: Models of the Solar System

1. The first astronomers thought that the stars, planets, and sun revolved around
a. the sun.
b. the Milky Way.
c. Earth.
d. the moon.

EARLY MODELS OF THE SOLAR SYSTEM

2. More than 2,000 years ago, the Greek philosopher Aristotle suggested a model of the solar system that was Earth-centered, or
a. geocentric.
b. geometric.
c. geologic.
d. geothermal.
\qquad 3. The pattern by which planets appear to move backward in the sky relative to the stars is called
a. reverse motion.
b. restrained motion.
c. retrograde motion.
d. revolving motion.
3. The Greek astronomer Claudius Ptolemy proposed that planets moved in small circles, or epicycles, as they
a. revolved in larger circles around the moon.
b. revolved in larger circles around the sun.
c. revolved in even smaller circles around Earth.
d. revolved in larger circles around Earth.
4. The Polish astronomer Nicolaus Copernicus proposed a model of the solar system that was sun-centered, or
a. lunacentric.
b. astrocentric.
c. heliocentric.
d. celestracentric.
5. According to Copernicus, all the planets revolved around
a. the sun in the same direction but at different speeds and distances.
b. the moon in the same direction but at different speeds and distances.
c. the sun in different directions but at the same speeds and distances.
d. the sun in different directions and different speeds and distances.
\qquad Class \qquad Date \qquad
Directed Reading continued

KEPLER'S LAWS

7. Upon whose observations did Johannes Kepler base his three laws of planetary motion?

In the space provided, write the letter of the definition that best matches the term or phrase.
\qquad 8. eccentricity
\qquad 9. ellipse
10. orbital period
a. a closed curve whose shape is determined by two points, or foci
b. the time required for a body to complete a single orbit
c. the degree of elongation of an elliptical orbit
11. What does the law of ellipses state?
\qquad
\qquad
\qquad
12. In planetary orbits, one focus is located within the \qquad and no object is located at the other focus.
13. How is eccentricity determined?
\qquad
\qquad
\qquad
14. What did Kepler discover about the orbit of Mars?
\qquad
\qquad
15. The law of equal areas states that equal areas are covered in equal amounts of time as an object orbits the \qquad
16. Kepler's third law, the law of periods, describes the relationship between the average distance of a planet from the sun and the \qquad of the planet.
\qquad
\qquad Date \qquad
Directed Reading continued
17. According to the law of periods, the cube of the average
\qquad of a planet from the sun is always proportional to the square of the period.
18. What mathematical formula is used to explain the law of periods?
\qquad
\qquad
\qquad

NEWTON'S EXPLANATION OF KEPLER'S LAWS

Use the terms from the list below to complete the sentences that follow. Each term may be used only once.
revolution gravity inertia
19. The tendency of a stationary body to remain at rest or of a moving body to remain in motion until an outside force acts upon it is called
\qquad —.
20. Newton discovered that an outside force called \qquad causes the orbit of a planet to curve.
21. The outer planets have longer periods of \qquad than the inner planets because the outer planets are less affected by the sun's gravitational pull.
\qquad
\qquad Date \qquad

Skills Worksheet

Directed Reading

Section: The Inner Planets

1. The planets closest to the sun are called the \qquad
2. Name the four inner planets.
\qquad
\qquad
\qquad
\qquad
3. The inner planets are also called \qquad because they are like Earth.
4. Describe the composition of the inner planets.
\qquad
\qquad
\qquad
5. Bowl-shaped depressions called \qquad formed on the surfaces of inner planets when the planets collided with other objects in space.

MERCURY

\qquad 6. Mercury, the closest planet to the sun, circles the sun every
a. 44 days.
b. 88 days.
c. four years.
d. 80 hours.
\qquad 7. Mercury rotates on its axis once every
a. 95 days.
b. 45 days.
c. 59 days.
d. five years.
\qquad 8. Mercury's surface features a long line of cliffs and
a. dry ocean beds.
b. a large number of craters.
c. shallow fresh-water springs.
d. lava plains.
\qquad Class \qquad Date \qquad
Directed Reading continued
9. The absence of a dense atmosphere and Mercury's slow rotation contribute to
a. long days and short nights.
b. short days and long nights.
c. steady temperatures.
d. a large daily temperature range.

VENUS

10. How long is the orbital period of Venus, the second planet from the sun?
11. How often does Venus rotate?
12. The planet that Venus most resembles in mass, size, and density is
\qquad
13. Venus's atmospheric pressure is about \qquad times the pressure on Earth.
14. What two factors cause the high temperatures on Venus?
\qquad
\qquad
15. What percentage of the atmosphere on Venus is composed of carbon dioxide?
\qquad
16. What phenomenon occurs when solar energy heats Venus's surface and the high concentration of carbon dioxide in the atmosphere blocks most of the infrared radiation from escaping?
\qquad
\qquad
17. Venus appears to be very bright in the night sky because drops of
\qquad form a cloud layer that reflects sunlight.
18. Why is Venus commonly referred to as the evening star or morning star?
\qquad
\qquad
\qquad
\qquad Class \qquad Date \qquad
Directed Reading continued
19. The surface of Venus is composed of which two types of rock?

In the space provided, write the letter of the description that best matches the term or phrase.
\(\left.\begin{array}{ll}20. Magellan \& a. the highest volcano on Venus

21. volcano \& b. a U.S. satellite that collected data

about Venus\end{array}\right]\)| 22. Maat Mons | c. a landform commonly found on Venus |
| :--- | :--- |

23. How could the craters on Venus be described?
24. What evidence indicates that Venus undergoes a periodic resurfacing?
\qquad
\qquad

EARTH

25. Earth is the \qquad planet from the sun.
26. The orbital period of Earth is \qquad days.
27. Earth completes one \qquad on its axis every day.
28. How many moons does Earth have?
29. Over the last \qquad years, Earth's continents separated from a single landmass and drifted to their present positions.
30. What two factors have caused the surface of Earth to keep changing?
\qquad
\qquad
31. Why is Earth the only outer planet on which water exists in a liquid state?
\qquad
\qquad
\qquad Class \qquad Date \qquad
Directed Reading continued
32. How was Earth able to maintain the moderate temperatures that were necessary to support life?
\qquad
\qquad
33. What three elements does Earth have in the proper combination necessary to support life?
\qquad
\qquad
\qquad

MARS
34. Mars is the \qquad planet from the sun.
35. How long is Mars's orbital period?
\qquad
36. How often does Mars rotate on its axis?
37. Why are Mars's seasons similar to Earth's?
\qquad
\qquad
38. Mars is believed to have been geologically active because of its massive volcanoes and a system of deep \qquad on its surface.
39. One of the many major volcanic regions on Mars is called
\qquad
40. The largest volcano on Mars is \qquad which is three times the height of Mount Everest and has a base about the size of Nebraska.
41. Why do scientists think that Martian volcanoes have grown so large?
\qquad
\qquad
42. Two seismic wave-producing geological events called
\qquad indicate that volcanoes on Mars may still be active.
\qquad Class \qquad Date \qquad
Directed Reading continued
43. Why can water not exist as a liquid on Mars?
44. Which two spacecraft found evidence that liquid water once did exist on Mars's surface?
\qquad
\qquad
45. Mars has many surface features that are characteristic of
\qquad by water.
46. Where might water exist as permanent frost or as a liquid on Mars?
\qquad
\qquad
\qquad
\qquad
\qquad Date \qquad

Skills Worksheet

Directed Reading

Section: The Outer Planets

In the space provided, write the letter of the description that best matches the term or phrase.

_ 1. outer planets

\qquad 2. asteroid belt
3. gas giant
4. Pluto
a. a planet with a deep and massive gaseous atmosphere
b. the planets farthest from the sun; include Jupiter, Saturn, Uranus, Neptune, and Pluto
c. the smallest and usually most distant planet; differs from other outer planets
d. a ring of debris that separates the inner planets from the outer planets

GAS GIANTS

5. How do the gas giants compare with the terrestrial planets?
a. Gas giants are larger and more dense.
b. Gas giants are larger and less dense.
c. Gas giants are smaller and more dense.
d. Gas giants are smaller and less dense.
\qquad 6. Compared with the terrestrial planets, the gas giants
a. have more gravity, which helps them retain gases.
b. have less gravity, which helps them retain gases.
c. have the same amount of gravity, which helps them retain gases.
d. have no gravity, which helps them retain gases.
6. The thick atmosphere of the gas giants is made up of
a. oxygen and hydrogen.
b. helium and carbon dioxide.
c. hydrogen and helium.
d. carbon dioxide and oxygen.
7. The gas giants have ring systems that are made up of
a. orbiting moons.
b. dust and icy debris.
c. comets.
d. asteroids and gases.
\qquad Class \qquad Date \qquad
Directed Reading continued

JUPITER

9. Jupiter is the \qquad planet from the sun.
10. Jupiter's mass is more than \qquad times that of Earth.
11. How long is Jupiter's orbital period?
\qquad
12. How often does Jupiter rotates on its axis?
\qquad
13. Jupiter has at least 60 \qquad , four of which are the size of small planets.
14. How much of Jupiter's atmosphere is composed of hydrogen and helium?
15. Jupiter's atmosphere is much like the atmosphere of the
\qquad
16. Why didn't Jupiter become a star?
\qquad
\qquad
\qquad
17. What do Jupiter's unique bands of orange, gray, blue, and white indicate?
\qquad
\qquad
\qquad
18. How do the bands form?
\qquad
\qquad
\qquad
19. Describe Jupiter's Great Red Spot.
\qquad
\qquad
\qquad
\qquad Class \qquad Date \qquad
Directed Reading continued
20. What do Jupiter's high wind speeds tell scientists about the planet's weather?
\qquad
\qquad
21. How does Jupiter's large mass affect its interior temperature and pressure?
\qquad
\qquad
\qquad

SATURN
22. How far is Saturn from the sun?
a. It is the fourth planet from the sun.
b. It is the sixth planet from the sun.
c. It is the closest planet to the sun.
d. It is the farthest planet from the sun.
23. How long is Saturn's orbital period?
a. 100 years
b. 2,950 years
c. three years
d. 29.5 years
24. How many moons does Saturn have?
a. at least 30
b. at least 60
c. at least 75
d. at least 125
25. How large is Titan, Saturn's largest moon?
a. half the size of Earth
b. twice the size of Earth
c. half the size of the sun
d. twice the size of Venus
26. Saturn, like the planet \qquad is made up almost entirely of hydrogen and helium and has a rocky, iron core.
27. Saturn is the least \qquad planet in the solar system.
28. Saturn is known for its \qquad , which are two times the planet's diameter.
29. Like Jupiter, Saturn has \qquad of colored clouds.
\qquad Class \qquad Date \qquad
Directed Reading continued
30. How often does Saturn rotate on its axis?
31. NASA's \qquad spacecraft will orbit Saturn for many years to gather information about the planet and its moon Titan.

URANUS

32. Uranus is the \qquad planet from the sun and the third largest planet in the solar system.
33. Why is Uranus a difficult planet to study?
\qquad
\qquad
34. Uranus has at least \qquad moons and at least 11 small rings.
35. The orbital period for Uranus is almost \qquad years.
36. Although most planets rotate with their axis perpendicular to their orbital planes, Uranus's axis is almost \qquad to the plane of its orbit.
37. How often does Uranus rotate?
38. The planet's blue-green color indicates that the atmosphere may contain significant amounts of \qquad in addition to hydrogen and helium.

NEPTUNE

39. Neptune is the \qquad planet from the sun and is similar to Uranus in size and mass.
40. Neptune's orbital period is nearly 164 years, and the planet rotates about every \qquad h.
41. Neptune has at least \qquad moons and possibly four rings.
\qquad Class \qquad Date \qquad
Directed Reading continued
42. How was Neptune's existence predicted before the planet was actually discovered?
\qquad
\qquad
\qquad
43. Neptune's atmosphere is made up of which gases?
\qquad
44. What have images taken by Voyager 2 and the Hubble Space Telescope told us about Neptune's weather?
\qquad
\qquad

PLUTO

45. Pluto is the \qquad planet from the sun.
46. Pluto's orbit is an unusually elongated and tilted \qquad .
47. How does Pluto compare with the other planets in terms of its size and distance from the sun?
\qquad
\qquad
48. What is Pluto made of?
\qquad
\qquad

OBJECTS BEYOND PLUTO

49. Describe the Kuiper belt.
\qquad
\qquad
\qquad
50. Name two objects that have been found beyond Pluto.
\qquad Class \qquad Date \qquad
Directed Reading continued

EXOPLANETS
51. Define exoplanet.
\qquad
52. Because exoplanets cannot be directly observed through telescopes or satellites, how do scientists know they exist?
\qquad
\qquad
\qquad
\qquad
53. How do scientists know that all of the exoplanets they have identified are larger than Saturn?
\qquad
\qquad
\qquad
\qquad

