Lesson 3.6 Writing Algebraic Expressions

Translate each verbal description into an algebraic expression. Simplify the expression when you can.

- 1. The sum of one-half t and one-third s
- **2.** Twenty subtracted from $\frac{15}{23}b$
- 3. The product of 5r and 7 divided by 15
- **4.** 120% of the sum of w and one-twelfth u
- 5. Nine-fourteenths of 6x reduced by 10
- **6.** 20% of one-half *w*
- **7.** Seven-tenths of the product of 5p and 3
- **8.** The sum of x, three-fourths x, and 90% of z
- **9.** Four times the difference of one-half x subtracted from three-eighths y
- 10. 60% of the difference of five-eighteenths v subtracted from four-sixths w

Solve. You may use a diagram, model, or table.

11. The length of a picture frame is (8u - 12) inches. Its width is $\frac{3}{4}$ of the length. Express the width of the picture frame in terms of u.

12. If 6 tablespoons = 1 fluid ounce, how many fluid ounces are in (10t - 4) tablespoons?

13. Eleven notebooks were added to *w* notebooks. 7 friends then shared the notebooks equally. Express the number of notebooks for each person in terms of *w*.

14. A pear costs \$0.40 and an apple costs \$0.25. What is the total cost of *p* pears and *q* apples?

15. The ratio of pencils to pens is 5:7. There are q pens. Express the numbers of pencils in terms of q.

Solve. You may use a diagram, model, or table.

16. When 5 adults joined a group of y diners, the ratio of adults to children in the restaurant became 3 : 5. Express the number of children in terms of y.

17. Freddy paid w dollars for a camera and \$120 for an additional camera lens. If the sales tax is 8%, how much did Freddy pay for the camera and lens, including the sales tax?

18. Emily has 5u game cards. John has $\frac{8}{13}$ fewer game cards than Emily. Find the average number of game cards that Emily and John have in terms of u.

- **19.** A train traveled at 140 miles per hour for $2\frac{1}{14}x$ hours, and (2x 3) miles per hour for the next 3 hours.
 - a) Express the total distance traveled by the train in terms of x.
 - **b)** If x = 3, what is the total distance traveled by the train?

© Marshall Cavendish International (Singapore) Private Limited.

22.
$$-3x - 24 = -3x + (-24)$$

= $(-3)(x) + (-3)(8)$
= $-3(x + 8)$

23.
$$-7k - 35 = -7k + (-35)$$

= $(-7)(k) + (-7)(5)$
= $-7(k + 5)$

24.
$$-9u - 81 = -9u + (-81)$$

= $(-9)(u) + (-9)(9)$
= $-9(u + 9)$

25.
$$-2 - 6n = -2 + (-6n)$$

= $(-2)(1) + (-2)(3n)$
= $-2(1 + 3n)$

26.
$$-4 - 12p = -4 + (-12p)$$

= $(-4)(1) + (-4)(3p)$
= $-4(1 + 3p)$

27.
$$-24x - 18y = -24x + (-18y)$$

= $(-6)(4x) + (-6)(3y)$
= $-6(4x + 3y)$

28.
$$-35m - 20n = -35m + (-20n)$$

= $(-5)(7m) + (-5)(4n)$
= $-5(7m + 4n)$

29.
$$-28w - 7q = -28w + (-7q)$$

= $(-7)(4w) + (-7)(q)$
= $-7(4w + q)$

30.
$$-48y - 16x = -48y + (-16x)$$

= $(-16)(3y) + (-16)(x)$
= $-16(3y + x)$

31.
$$3x + 3y + 9 = 3(x) + 3(y) + 3(3)$$

= $3(x + y + 3)$

32.
$$4a + 2b + 6 = 2(2a) + 2(b) + 2(3)$$

= $2(2a + b + 3)$

33.
$$15p + 5q + 10 = 5(3p) + 5(q) + 5(2)$$

= $5(3p + q + 2)$

34.
$$18d + 9e + 12 = 3(6d) + 3(3e) + 3(4)$$

= $3(6d + 3e + 4)$

35.
$$4s - 8t - 20 = 4s + (-8t) + (-20)$$

= $4(s) + 4(-2t) + 4(-5)$
= $4[s + (-2t) + (-5)]$
= $4(s - 2t - 5)$

36.
$$7a - 14b - 28 = 7a + (-14b) + (-28)$$

= $7(a) + 7(-2b) + 7(-4)$
= $7[a + (-2b) + (-4)]$
= $7(a - 2b - 4)$

37.
$$16a - 12b - 6 = 16a + (-12b) + (-6)$$

= $2(8a) + 2(-6b) + 2(-3)$
= $2[8a + (-6b) + (-3)]$
= $2(8a - 6b - 3)$

38.
$$33g - 11h - 66 = 33g + (-11h) + (-66)$$

= $11(3g) + 11(-h) + 11(-6)$
= $11[3g + (-h) + (-6)]$
= $11(3g - h - 6)$

39.
$$9 + 18m - 12n = 9 + 18m + (-12n)$$

= $3(3) + 3(6m) + 3(-4n)$
= $3[3 + 6m + (-4n)]$
= $3(3 + 6m - 4n)$

40.
$$35 - 5w + 25k = 35 + (-5w) + 25k$$

= $5(7) + 5(-w) + 5(5k)$
= $5[7 + (-w) + 5k]$
= $5(7 - w + 5k)$

Lesson 3.6

1.
$$\frac{t}{2} + \frac{s}{3}$$

2.
$$\frac{15}{23}b - 20$$

$$3. \ \frac{5r \cdot 7}{15} = \frac{35r}{15} = \frac{7r}{3}$$

4.
$$1.2\left(w + \frac{u}{12}\right) = 1.2 \cdot w + 1.2 \cdot \frac{u}{12}$$
$$= 1.2w + \frac{u}{10}$$

5.
$$\frac{9}{14}(6x) - 10 = \frac{27}{7}x - 10$$

6.
$$\frac{20}{100} \cdot \frac{1}{2} w = \frac{1}{10} w$$

7.
$$\frac{7}{10} \cdot 5p \cdot 3 = \frac{21p}{2}$$

8.
$$x + \frac{3}{4}x + 0.9z = \frac{4}{4}x + \frac{3}{4}x + 0.9z = \frac{7}{4}x + 0.9z$$

9.
$$4\left(\frac{3}{8}y - \frac{1}{2}x\right) = 4\left(\frac{3}{8}y\right) + 4\left(-\frac{1}{2}x\right)$$

= $\frac{3}{2}y + (-2x)$
= $\frac{3}{2}y - 2x$

10.
$$0.6 \left(\frac{4}{6}w - \frac{5}{18}v \right) = 0.6 \left(\frac{4}{6}w \right) + 0.6 \left(-\frac{5}{18}v \right)$$
$$= \frac{2}{5}w + \left(-\frac{1}{6}v \right)$$
$$= \frac{2}{5}w - \frac{1}{6}v$$

11. Width:
$$\frac{3}{4}(8u - 12) = \frac{3}{4}(8u) + \frac{3}{4}(-12)$$

= $6u + (-9)$
= $(6u - 9)$ inches

The width of the picture frame is (6u - 9) inches.

12. 1 tablespoon = $\frac{1}{6}$ fluid ounces (10t - 4) tablespoons = $\frac{1}{6}$ (10t - 4) fluid ounces = $\frac{1}{6} \cdot 10t - \frac{1}{6} \cdot 4$ = $\left(\frac{5}{3}t - \frac{2}{3}\right)$ fluid ounces

(10t - 4) tablespoons is $\left(\frac{5}{3}t - \frac{2}{3}\right)$ fluid ounces.

- **13.** Each person gets $\left(\frac{11+w}{7}\right)$ notebooks.
- **14.** Total cost of pears and apples: 0.4p + 0.25q
- **15.** Number of pencils: $\frac{5}{7}q$ There are $\frac{5}{7}q$ pencils.
- **16.** Number of diners after 5 adults joined: y + 5Number of children: $\frac{5}{8}(y + 5)$

The number of children is $\frac{5}{8}(y+5)$.

- 17. Cost of camera and lens before tax: w + 120 Cost of camera and lens including tax: $1.08(w + 120) = 1.08 \cdot w + 1.08 \cdot 120$ = (1.08w + 129.6) Freddy paid (1.08w + 129.6) dollars for the camera and lens.
- **18.** Number of cards Johnson has: $\left(5u \frac{8}{13}\right)$

Total number of cards that Emily and Johnson have: $5u - \frac{8}{13} + 5u = (5u + 5u) - \frac{8}{13}$ $= 10u - \frac{8}{13}$

Average number of cards:

$$\frac{1}{2} \left(10u - \frac{8}{13} \right) = \frac{1}{2} (10u) + \frac{1}{2} \left(-\frac{8}{13} \right)$$
$$= 5u + \left(-\frac{4}{13} \right)$$
$$= 5u - \frac{4}{13}$$

Emily and Johnson have an average of $\left(5u - \frac{4}{13}\right)$ cards.

19. a) Total distance traveled:

$$140 \cdot 2\frac{1}{14}x + 3(2x - 3)$$

$$= 140 \cdot \frac{29}{14}x + 3(2x) + 3(-3)$$

$$= 290x + 6x + (-9)$$

$$= 290x + 6x - 9$$

$$= (296x - 9) \text{ mi}$$

The bullet train traveled a total of (296x - 9) miles.

b) When x = 3, total distance traveled: $296x - 9 = 296 \cdot 3 - 9 = 879$ mi The total distance traveled by the bullet train is 879 miles.

Lesson 3.7

1. Difference in length:

$$(12.5x + 17) - (5x + 0.4w)$$
= $12.5x + 17 + (-1)(5x) + (-1)(0.4w)$
= $12.5x + (-1)(5x) + 17 + (-1)(0.4w)$
= $12.5x - 5x + 17 - 0.4w$
= $12.5x - 5x + 17 - 0.4w$
= $(7.5x + 17 - 0.4w)$ cm

The difference in length of the two ropes is (7.5x + 17 - 0.4w) centimeters.

2. Circumference = $2\pi r$

$$= 2\left(\frac{22}{7}\right)(7n - 21)$$

$$= \left(\frac{44}{7}\right)(7n - 21)$$

$$= \left(\frac{44}{7}\right)(7n) + \left(\frac{44}{7}\right)(-21)$$

$$= 44n + (-132)$$

$$= (44n - 132) \text{in.}$$

The circumference of the circle is (44n - 132) inches.

3. Total sales: 4(7.6k + 2.2)= 4(7.6k) + 4(2.2)= (30.4k + 8.8) dollars

The total sales during the promotion was (30.4k + 8.8) dollars.

4. Number of yellow ribbons: $\frac{6}{17}(2m+5)$ = $\frac{6}{17}(2m) + \frac{6}{17}(5)$ = $\frac{12}{17}m + 1\frac{13}{17}$

There are $\frac{12}{17}m + 1\frac{13}{17}$ yellow ribbons.

5. Number of children who went to New Zealand: c - 0.36c - 24 = 0.64c - 24 (0.64c - 24) children went to New Zealand.