Science Gateway Content Review Topics

Chemistry Topics

*Solutions and Concentrations

- solute, solvent
- unsaturated, saturated, supersaturated
- effect of temperature increase on solid solutes
- effect of temperature increase on gas solutes
- molarity (moles solute/liter of solution)
- percent concentration (grams solute/grams solute + grams solvent) x 100%

*Periodic Table and Trends

- metals, nonmetals, metalloids: location on periodic table and properties of each
- trend of atomic radii (size) across a period and down a group
- trend of reactivity across a period and down a group
- location of radioactive elements
- the 7 diatomic elements

*Acids and Bases

- acidsô have hydrogen capable of releasing as hydrogen ion (H⁺)
- basesô have hydroxide ion and capable of releasing hydroxide ion (OH¹)
- properties of acids and bases
- tests for an unknown substance and deciding if it is an acid, base, or neutral (litmus and phenolphthalein)
- pH scale for measuring acidity and alkalinity
- range of pH scale for acids, bases, and neutral substances
- within acidic range, which is most acidic; within basic range which is most basic
- acid rainô cause (how it forms) and effects

*Chemical and Physical Properties of Matter

- examples of physical properties as observable or measurable properties
- examples of chemical properties as reactivity or non-reactivity
- identify substances using physical and chemical properties
- comparison of physical and chemical changes
- classify substances as elements, compounds, or mixtures

*Energy

- law of conservation of energy/mass
- exothermic and endothermic changes
- energy changes in photosynthesis and respiration
- identify energy transformations (ex: From gasoline in a car to cargs wheels moving)
- calculate heats of combustion

*Atomic Structure

- location of protons, neutrons, electrons in an atom
- charge and mass of these subatomic particles
- atomic number and atomic mass and mass number
- isotopes
- radioactive elements: location on periodic table
- 3 types of radioactive particles released; use in bombs and power plants
- energy of the future: fusion

*Bonding

- bonding occurs via gaining, losing, or sharing e
- covalent bonding: sharing electrons that occurs between two non-metals
- ionic bonding: gaining or losing electrons; occurs between a metal and a non-metal
- how ions form from neutral atoms (cations form from an atom losing electrons; anions form from an atom gaining electrons)
- group 1 ions form 1:1 compounds with group 17 and 2:1 compounds with group 16.
- single, double, triple bonds = # of electron pairs being shared
- writing and naming formulas
- electron dot formulas

intermolecular forces on boiling and melting points

7	6			5			4			ယ			2			T				PERIO		
87 Francium (223) 2.8.18, 32, 18	132,905	S	55	85.47 2, 8, 18, 8, 1	 공	37	2, 8, 8, 1	Pofassium 39_102	ㅈ	19	2, 8, 1	Sodium 22,9898	Na	11	2, 1	Lithium 6.941	<u> </u>	З	1_00797	I	_	GR 1 (la)
88 Ra Radium (226) 8 2 8, 18, 32, 18	137.34	Ba		88,905 12, 8, 18, 8, 2	Sr	38	2, 8, 8, 2	Calcium 40.08	Ca	20	2, 8, 2	Magnesium 24,312	⊠	12	2,2	Beryllium 9.0122	Be	4				GROUP) 2 (IIa)
Activide Series*		Lanthanide Series*	ıσı	2.8.18.9.2	\	39	2, 8, 9, 2	Scandium 44,956	Sc	21	3											
104	178.49	Table T	72_	91.22 2,8,18, 10, 2	Zr	40	2, 8, 10, 2	7itanium 47.90	=	22	4				Г					7		
105	b)	Ja	73	92906	N _D	41	2, 8, 11, 2	Vanadium 50,942	<	23	O1											
	183,85 28,18,32,12,2	\	74	95.94 2.8.18.13.1	Mo	42	2, 8, 13, 1	Chromium 51,996	င္	24	6						ŕ	X 				
	28,18,32,13,2	Re	75	(97)		43	2, 8, 13, 2	Manganese 54,9380	<u>≤</u>	25	7					glectic	5					
	190.2	SO	76	101.07 2.8.18.15.1		44	_		Fe	26	00					electron an angement -	atomic weight -	- atomic symbol - name of element	atomic number -			
	192.2	7	77	2,8,18,16, 1		45	2, 8, 15, 2	Cobell 58,9332	င္ပ	27	8							ymbol -	umber -			
	195.09	P	78	106,4 2,8,18,18,0	Pd	- 64	2, 8, 16, 2	Mickel 58.71	Z	28	10					23	10,811	Boron	IJ			
		Au	79	107,868 2,8,18,18,1	Ag	47	2, 8, 18, 1	Copper 63.546	ဥ	29	1				L							
_	200.59	Hg	08	112.40 2.8.18.18.2			2, 8, 18, 2	Zinc 65,37	Zn	30	12											
	204.37	Thelium	81	114.82 2.8.18.18.3	Б	49	2, 8, 18, 3	Galfum 69,72	Ga	31	2, 8, 3	Aluminum 26,9815	≥	13	2, 3	Baron 10.811	B	5				13 (IIIa)
	207.19	Pb	82	118.69	Sn	50	2, 8, 18, 4	Germanium 72.59	Ge	32	2, 8, 4	Slicon 28.086	<u>S</u>	14	2,4	Carbon 12,011	ဂ	6				14 (IVa)
	208.9806	<u>D</u>	83	121_75 121_75 2.8,18,18.5	dS	51	2, 8, 18, 5	Arsenic 74.9216	As	33	2, 8, 5	Phospharus 30,9738	P	15	2,5	NBrogen 14,0067	Z	7				GR(15 (Va)
	(209)	Po	84	127.60	Te	52	2, 8, 18, 6		Se		2, 8, 6	Sufur 32,064	S	16	2,6	Oxygen 15,9994	0	8				GROUP /a) 16 (VIa)
	(210)	Asterior A	_	126.9045 2,8,18,18,7		53	7		Βŗ	35	2, 8, 7		<u>က</u>	17		Fluorine 18.998	П	<u> </u>				17 (VIIa)
	(222) 2,8,18,32,18,8	R	98	131.30 2.8.18.18.8	Xe	54	2, 8, 18, 8	Krypton 83.80	즛	36	2, 8, 8	Argon 39,948	₽	18	2,8	Meon 20.183	Z e	10	4.0026	He	2	18 (VIIIa)

Revised 3/30/05

Graphing Reminders

- identify independent and dependent variables and which goes on x and y axis
- appropriately label x and y axes with measurement AND unit
- choose appropriate scales for x and y axes
- plot points and connect, using best fit
- title graph so that it reflects overall purpose, yet is fairly specific
- use key for graph if needed

Biology Topics

*Energy/Matter Transformations

• Law of Conservation of Matter and Energyô occurs in food chain (includes decomposers)

*Basic Life Functions and Organization

- Homeostasisô balance of life functions, environment, and activities of organism
- Characteristics of living thingsô made of cells highly organized, need energy, grow and develop, life span, reproduce, respond to stimuli adapt to environmental changes
- levels of organization: Cells tissue organ organ system organism

*Ecology

- relationships of living things to their environment
- population, community, ecosystem, biomes, biosphere
- factorsô abiotic (nonliving components; ex: light) and biotic (living components; ex: predator)
- food chainô producer (plants), consumer (herbivores and carnivores), decomposers
- biological diversityô the number of species in community, greatest at equator
- nicheô position or role of a species in community.

*Cell Theory

- the cell is the basic unit of lifeô all organisms are made of one or more cells
- cells are produced from other cells
- differences between animal and plant cellsô plant cells contain a cell wall and chloroplasts; undergo photosynthesis
- compare a cell\(\psi \) organelles to the operation of a factory
- functionô absorb nutrients, release wastes, convert energy, communicate with other cells
- 2 types of cells: PROKARYOTES (small, simple, no nucleus, single chromosome) and EUKARYOTES (nucleus, typical cell)

Cell Organelles

- o cell & nuclear membraneô controls in & out, semipermeable
- o nucleusô control center (the brain)
- o cytoplasmô gel-like, throughout cell
- mitochondriaô makes & releases energy for cell, called ATP; place of respiration (power supply)
- o Golgi bodyô package & deliver proteins (packing and shipping)
- o endoplasmic reticulumô transports materials throughout cell (highways)
- o ribosomesô sight of protein synthesis (protein factories)
- o cell wallô in plants only; support/ give structure
- o chloroplastsô in plants only; carries out photosynthesis

*Photosynthesis & Cellular Respiration

- reverse reactions (recycling matter)ô one needs and stores energy, the other releases energy (as ATP)
- animals only go through cellular respiration, but plants photosynthesis AND respire

• Photosynthesis

- o endothermic, stores energy, requires light, occurs in chloroplasts of cells
- makes a high energy molecule called glucose (food) and oxygen from carbon dioxide and water and energy (sunlight)
- o equation:

$$6CO_2 + 6H_2O + energy C_6H_{12}O_6 + 6O_2$$

• Respiration

- o Exothermic, releases energy (ATPô adenosine triphosphate), occurs in mitochondria
- o makes energy, carbon dioxide, and water from glucose and oxygen
- o equation:

$$C_6H_{12}O_6 + 6O_2 - 6CO_2 + 6H_2O + energy$$

* Genetics/DNA/Heredity

- DNA(deoxyribonucleic acid)ô the õcodeö for making proteins; DNA controls everything; found in the nucleus of cells on chromosomes
- building blocks of DNA are called nucleotides
- DNA = double strand (double helix) in a spiral with nitrogen bases paired up (A with T and C with G)
- bases = adenine (A), thymine (T), cytosine (C), guanine (G)
- DNA is like a recipe containing directions of how to make something (hair color, height, eye color, etc)
- sequence of bases (A, T, C, G) determines traits (genes)
- only identical twins have the same sequence of bases; everyone else has different sequences
- traitsô 1 gene from each parent (dominant and recessive traits)
- genotype and phenotype
- proteins for the cell are made from portions of DNA

Mitosis

- a cell divides giving resulting cells the full number of chromosomes
- one cell produces 2 cells in one division
- occurs in growth
- animal cells pinch in half while plant cells grow a cell wall

Meiosis

- a cell divides giving resulting cell ½ the number of chromosomes
- one cell produces 4 cells in two divisions
- occurs in (reproductive) sex cells so that offspring get half of the needed chromosomes from each parent.