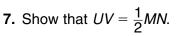
		C

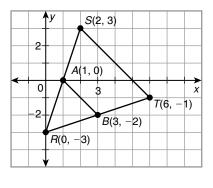
Every triangle has three midsegments.

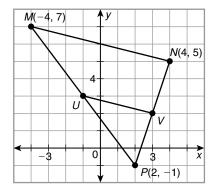
R is the midpoint of \overline{CD} .

S is the midpoint of \overline{CE} .

Use the figure for Exercises 1–4. \overline{AB} is a midsegment of $\triangle RST$.


The Triangle Midsegment Theorem


A midsegment of a triangle joins the midpoints of two sides of the triangle.


- **1.** What is the slope of midsegment \overline{AB} and the slope of side \overline{ST} ?
- **2.** What can you conclude about \overline{AB} and \overline{ST} ?
- 3. Find AB and ST.
- **4.** Compare the lengths of \overline{AB} and \overline{ST} .

Use $\triangle MNP$ for Exercises 5–7.

- **5.** \overline{UV} is a midsegment of $\triangle MNP$. Find the coordinates of U and V.
- **6.** Show that $\overline{UV} \parallel \overline{MN}$.

Holt Geometry

D

30

RS is a midsegment

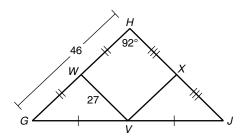
of $\triangle CDE$.

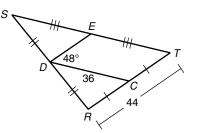
E

5-4

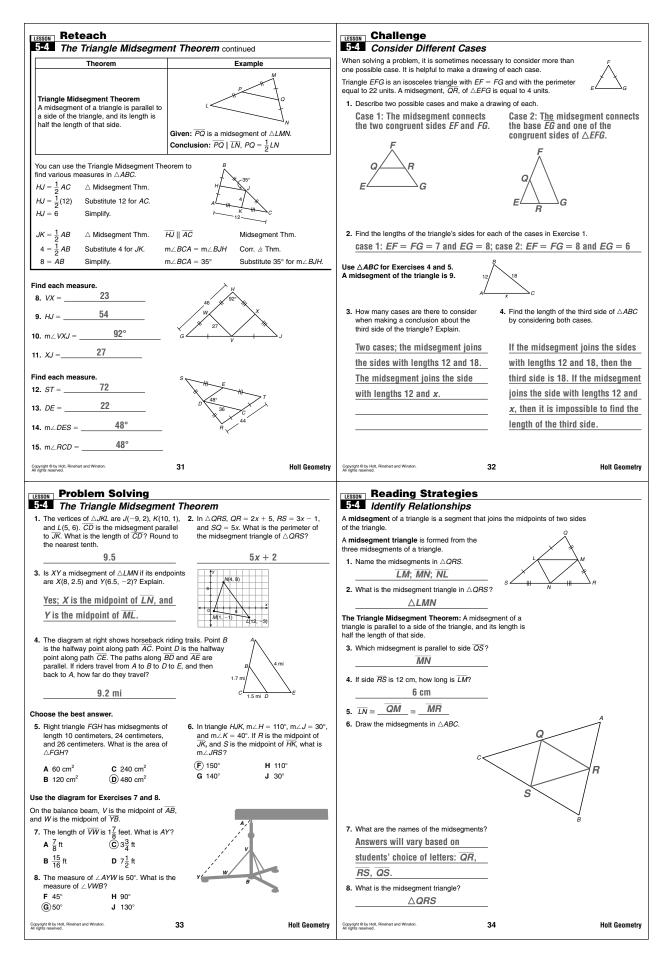
LESSON Reteach

	Theorem		Example
A midsegmer a side of the	segment Theorem Int of a triangle is parallel to triangle, and its length is h of that side.	Given: \overline{PQ} is a mide Conclusion: $\overline{PQ} \parallel \overline{L}$	•
	he Triangle Midsegment The asures in $\triangle ABC$.	neorem to B	X 25°
$HJ = \frac{1}{2}AC$	riangle Midsegment Thm.	н	×33
$HJ = \frac{1}{2}(12)$	Substitute 12 for AC.	A	4
HJ = 6	Simplify.		<u>к</u> ##С 12
$JK = \frac{1}{2}AB$	riangle Midsegment Thm.	$\overline{HJ} \parallel \overline{AC}$	Midsegment Thm.
$4=\frac{\overline{1}}{2}AB$	Substitute 4 for JK.	m∠ <i>BCA</i> = m∠ <i>BJH</i>	Corr. 🖄 Thm.
		m∠ <i>BCA</i> = 35°	Substitute 35° for m∠ <i>BJH</i>


Find each measure.



- **9.** *HJ* = _____
- **10.** m∠*VXJ* = _____
- **11.** *XJ* = _____


Find each measure.

- **12.** *ST* = _____
- **13.** *DE* = _____
- **14.** m∠*DES* = _____
- **15.** m∠*RCD* = _____

	LESSON Practice B 5-4 The Triangle Midsegment Theorem
Use the Triangle Midsegment Theorem	Use the figure for Exercises 1–6. Find each measure.
to name parts of the figure for	1. HI 9.1 2. DF 35
Exercises 1–5.	H 17.5 G
1. a midsegment of $\triangle ABC$ 2. a segment parallel to \overline{AC} A C DE DE	3. $GE {F} = 4. m \angle HIF {F} = 58^{\circ} F_{F} = 1000 F_{F}$
	5. m∠ <i>HGD</i> <u>122°</u> 6. m∠ <i>D</i> <u>58°</u>
	The Bermuda Triangle is a region in the Atlantic Ocean off the southeast coast of
5. a segment that has twice the length of EC	the United States. The triangle is bounded Miami to San Juan 1038 Miami
Complete Exercises 6–13 to show $E(0, 4)$	and Bermuda In the figure the dotted lines
that midsegment <i>GH</i> is parallel to \overrightarrow{DF} and that $GH = \frac{1}{2}DF$.	are midsegments.
2	7. Use the distances in the chart to find the perimeter of the Bermuda Triangle 3045 mi
6. Use the Midpoint Formula to find the coordinates of G. (,)	8. Find the perimeter of the midsegment triangle within the Bermuda Triangle. 1522.5 mi
7. Use the Midpoint Formula to find the coordinates of <i>H</i> . (<u>3</u> , <u>2</u>)	9. How does the perimeter of the midsegment triangle compare to
8. Use the Slope Formula to find the slope of DF.	the perimeter of the Bermuda Triangle?
9. Use the Slope Formula to find the slope of GH.	It is half the perimeter of the Bermuda Triangle.
10. If two segments have the same slope, then the segments are parallel. Are DF and GH parallel?	Write a two-column proof that the perimeter of a \bigwedge^{o}
are parallel. Are <i>DF</i> and <i>GH</i> parallel? <u>yes</u> 11. Use the Distance Formula to find <i>DF</i> . 6	midsegment triangle is half the perimeter of the triangle.
12. Use the Distance Formula to find <i>GH</i> . 3	10. Given: \overline{US} , \overline{ST} , and \overline{TU} are midsegments of $\triangle PQR$.
13. Does $GH = \frac{1}{2}DF$?	Prove: The perimeter of $\triangle STU = \frac{1}{2}(PQ + QR + RP)$.
$a = \frac{1}{2} D P P$	Statements Reasons
Use the Triangle Midsegment Theorem	1. \overline{US} , \overline{ST} , and \overline{TU} are midsegments of 1. Given
and the figure for Exercises 14–19. Solution $r_{55^{\circ}}$, r_{7}	$\triangle PQR.$
	2. $ST = \frac{1}{2}PQ$, $TU = \frac{1}{2}QR$, $US = \frac{1}{2}RP$ 2. Midsegment Theorem
24 R	3. The perimeter of $\triangle STU = ST + TU + US$. 3. Definition of perimeter
14 ST 12 15 OB 22	4. The perimeter of $\triangle STU = \frac{1}{2}PQ + \frac{1}{2}QR$ 4. Substitution
	$+\frac{1}{2}RP.$ 2 2
16. <i>PU</i> 12 17. m∠ <i>SUP</i> 55°	2
18. m∠ <i>SUR</i> <u>125°</u> 19. m∠ <i>PRQ</i> <u>55°</u>	5. The perimeter $\triangle STU = \frac{1}{2}(PQ + QR + RP)$ 5. Distributive Property of =
	Copyright @ by Holt, Risehant and Winston. 28 Holt Geometry
Copyright @ by Holt, Rinehant and Winston. 27 Holt Geometry All rights reserved.	All rights reserved. 20 Holt declined y
Practice C	Beteach
Practice C Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF = \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsecement theorem of $\Delta DE = DE $	Reteach The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. R is the midpoint of \overline{CD} . R is the midpoint of \overline{CE} . C R is the side of midsegment \overline{AB} and the slope of \overline{CE} .
5-4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment	 5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. From the midpoint of CD. B is the midpoint of CD. C B is the midpoint of CD. <li< td=""></li<>
5-4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$	 5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5-4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Relflexive Property, thus $\triangle EFD \cong \triangle ADF$.	5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$.	5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. <u>2ab</u> 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . <u>D(0, b)</u> , <i>E</i> (a, b), <i>F</i> (a, 0) 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 1	5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. <u>2ab</u> 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$.	5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. \overrightarrow{R} is the midpoint of \overrightarrow{CD} . \overrightarrow{S} is the midpoint of \overrightarrow{CD} . \overrightarrow{S} is the midpoint of \overrightarrow{CE} . \overrightarrow{RS} is a midsegment of $\triangle CDE$. Use the figure for Exercises 1-4. \overrightarrow{AB} is a midsegment of $\triangle RST$. 1. What is the slope of midsegment \overrightarrow{AB} and the slope of side \overrightarrow{ST} ? -1; -1 2. What can you conclude about \overrightarrow{AB} and \overrightarrow{ST} ? Since the slopes are the same, $\overrightarrow{AB} \parallel \overrightarrow{ST}$.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF = \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. $ \begin{array}{c} \hline P \\ \hline S is the midpoint of \overrightarrow{CD}.\\ \hline S is the midpoint of \overrightarrow{CE}.\\ \hline C \\ \hline S is the midpoint of \overrightarrow{CE}.\\ \hline S is the midpoint of \overrightarrow{CE}.\\ \hline \hline S is the midpoint of \overrightarrow{CE}.\\ \hline \hline S$
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF \cong \angle AFD$. By CPCTC, $\angle DEF \cong \angle A$. $\frac{1}{2}ab$ 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. $\frac{1}{\pi}ab$	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. $ \begin{array}{c} \hline P \\ \hline S is the midpoint of \overrightarrow{CD}.\\ \hline S is the midpoint of \overrightarrow{CE}.\\ \hline C \\ \hline S is the midpoint of \overrightarrow{CE}.\\ \hline S is the midpoint of \overrightarrow{CE}.\\ \hline \hline S is the midpoint of \overrightarrow{CE}.\\ \hline \hline S$
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. $2ab$ 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. $\frac{1}{2}ab$ 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. $\frac{1}{2}ab$ 6. Pedro has already shown that $\triangle EFD \equiv \triangle ADF$. $\frac{1}{2}ab$	5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. \overrightarrow{R} is the midpoint of \overrightarrow{CD} . \overrightarrow{S} is the midpoint of \overrightarrow{CD} . \overrightarrow{R} is a midsegment of $\triangle CDE$. Use the figure for Exercises 1–4. \overrightarrow{AB} is a midsegment of $\triangle RST$. 1. What is the slope of midsegment \overrightarrow{AB} and the slope of side \overrightarrow{ST} ? $\overrightarrow{-1; -1}$ 2. What can you conclude about \overrightarrow{AB} and \overrightarrow{ST} ? Since the slopes are the same, $\overrightarrow{AB} \parallel \overrightarrow{ST}$. 3. Find AB and ST . $\overrightarrow{AB} = 2\sqrt{2}$, $ST = 4\sqrt{2}$ 4. Compare the lengths of \overrightarrow{AB} and \overrightarrow{ST} . $\overrightarrow{AB} = \frac{1}{2}ST$ or $ST = 2AB$
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. <u>2ab</u> 2. Find the coordinates of the midpoints <i>D</i> , <i>E</i> , and <i>F</i> . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: <i>F</i> is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has a fready shown that $\triangle EFD \equiv \triangle ADF$. 6. Pedro has a fready shown that $\triangle EFD \equiv \triangle ADF$. 7. Write a conjecture about congruent triangles and area. Possible answer: Congruent triangles have equal area.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\triangle DEF$ is a right angle. Write a proof that $\triangle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. Calculate the area of $\triangle ADF$. 7. Write a conjecture about congruent triangles and area. Possible answer: Congruent triangles have equal area. Pedro already knows some things about the area of the midsegment triangle of a right triangle. But he thinks he	5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. First the midpoint of \overrightarrow{CD} . S is the midpoint of \overrightarrow{CD} . S is the midpoint of \overrightarrow{CE} . c c c c c c c c
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. 7. Write a conjecture about congruent triangles and area. Possible answer: Congruent triangles have equal area. Pedro already knows some things about the area of the	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. 7. Write a conjecture about congruent triangles and area. Possible answer: Congruent triangles have equal area. Pedro already knows some things about the area of the midsegment triangle of a right triangle. But he thinks he can expand his theorem. Before he can get to that, however, he has to show another property of triangles and area. 8. Find the area of $\triangle WXY$, $\triangle WXZ$, and $\triangle YXZ$.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle AEC$. $\frac{1}{2}ab$ 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. Calculate the area of $\triangle ADF$. 7. Write a conjecture about congruent triangles and area. Possible answer: Congruent triangles have equal area. Pedro already knows some things about the area of the midsegment triangle of a right triangle. But he thinks he can expand his theorem. Before he can get to that, however, he has to show another property of triangles and area.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. <u>2ab</u> 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. $\frac{1}{2}ab$ 7. Write a conjecture about congruent triangles and area. Possible answer: Congruent triangles have equal area. Pedro already knows some things about the area of the midsegment riangle of a right triangle. But he thinks he can expand his theorem. Before he can get to that, however, he has to show another property of triangles and area. 8. Find the area of $\triangle WXY$, $\triangle WXZ$, and $\triangle YXZ$ to the area of $\triangle WXY$.	5-4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \equiv \triangle ADF$. 7. Write a conjecture about congruent triangles and area. Possible answer: Congruent triangles have equal area. Possible answer: Congruent triangles have equal area. 8. Find the area of $\triangle WXY$, $\triangle WXZ$, and $\triangle YXZ$ to the area of $\triangle WXY$. Possible answer: The total of the areas of $\triangle WXZ$ and $\triangle YXZ$ is equal to	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. First the midpoint of \overrightarrow{CD} . S is the midpoint of \overrightarrow{CD} . S is the midpoint of \overrightarrow{CE} . c c c c c c c c c c
9.14 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. 7. Write a conjecture about congruent triangles have equal area. Possible answer: Congruent triangles have equal area. Possible answer: Congruent triangles have equal area. 8. Find the area of $\triangle WXY$, $\triangle WXZ$, and $\triangle YXZ$ to the area of $\triangle WXY$. Possible answer: The total of the areas of $\triangle WXZ$ and $\triangle YXZ$ is equal to the area of $\triangle WXY$.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. 7. Write a conjecture about congruent triangles have equal area. Possible answer: Congruent triangles have equal area. Possible answer: Congruent triangles and area. 8. Find the area of $\triangle WXY$, $\triangle WXZ$, and $\triangle YXZ$ to the area of $\triangle WXY$. Possible answer: The total of the areas of $\triangle WXZ$ and $\triangle YXZ$ is equal to the area of $\triangle WXY$. 10. Write a conjecture about the areas of triangles within a larger triangle.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. Figure 1 and the slope of midsegment \overline{AB} and the slope of side \overline{ST} ?
9.14 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF = \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. 7. Write a conjecture about congruent triangles have equal area. Possible answer: Congruent triangles have equal area. Possible answer: Congruent triangles have equal area. 8. Find the area of $\triangle WXY$, $\triangle WXZ$, and $\triangle YXZ$. 16. 6; 10 9. Compare the total of the areas of $\triangle WXZ$ and $\triangle YXZ$ to the area of $\triangle WXY$. Possible answer: The total of the areas of $\triangle WXZ$ and $\triangle YXZ$ is equal to the area of $\triangle WXY$. 10. Write a conjecture about the areas of triangles within a larger triangle. Possible answer: The total of the areas of $\triangle WXZ$ and $\triangle YXZ$ is equal to the area of $\triangle WXY$. 10. Write a conjecture about the areas of triangles within a larger triangle.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments.
5.4 The Triangle Midsegment Theorem Pedro has a hunch about the area of midsegment triangles. He is a careful student, so he investigates in a methodical manner. First Pedro draws a right triangle because he knows it will be easy to calculate the area. 1. Find the area of $\triangle ABC$. 2ab 2. Find the coordinates of the midpoints D , E , and F . $D(0, b)$, $E(a, b)$, $F(a, 0)$ 3. Pedro knows it will be easy to find the area of $\triangle EFD$ if $\angle DEF$ is a right angle. Write a proof that $\angle DEF \cong \angle A$. Possible answer: F is the midpoint of \overline{AC} , so $AF = \frac{1}{2}AC$. $DE = \frac{1}{2}AC$ by the Midsegment Theorem, so $\overline{AF} \cong \overline{DE}$. $\overline{DE} \parallel \overline{AF}$ by the Midsegment Theorem and $\angle EDF$ and $\angle AFD$ are alternate interior angles, so $\angle EDF$ $\cong \angle AFD$. $\overline{DF} \cong \overline{DF}$ by the Reflexive Property, thus $\triangle EFD \cong \triangle ADF$. By CPCTC, $\angle DEF \cong \angle A$. 4. Find the area of $\triangle ABC$ and $\triangle EFD$. 5. Compare the areas of $\triangle ABC$ and $\triangle EFD$. 6. Pedro has already shown that $\triangle EFD \cong \triangle ADF$. 7. Write a conjecture about congruent triangles have equal area. Possible answer: Congruent triangles have equal area. Possible answer: Congruent triangles and area. 8. Find the area of $\triangle WXY$, $\triangle WXZ$, and $\triangle YXZ$ to the area of $\triangle WXY$. Possible answer: The total of the areas of $\triangle WXZ$ and $\triangle YXZ$ is equal to the area of $\triangle WXY$. 10. Write a conjecture about the areas of triangles within a larger triangle.	5.4 The Triangle Midsegment Theorem A midsegment of a triangle joins the midpoints of two sides of the triangle. Every triangle has three midsegments. Figure 1 and the slope of midsegment \overline{AB} and the slope of side \overline{ST} ?

