To access a customizable version of this book, as well as other interactive content, visit www.ck12.org.

CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the **FlexBook®**, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the **FlexBook Platform®**.

Copyright © 2015 CK-12 Foundation, www.ck12.org

The names “CK-12” and “CK12” and associated logos and the terms “**FlexBook®**” and “**FlexBook Platform®**” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws.

Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms.

Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/licenses/by-nc/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference.

Complete terms can be found at http://www.ck12.org/terms.

Printed: January 6, 2015

AUTHOR
Dana Desonie, Ph.D.
• Describe the activity and features of convergent plate boundaries where an oceanic plate meets a continental plate.

What do you see at an ocean-continent convergent boundary?

We continue our field trip up the West Coast. Just offshore from Washington, Oregon, and Northern California is a subduction zone, where the Juan de Fuca Plate is sinking into the mantle. The Juan de Fuca Plate is being created at a spreading center, the Juan de Fuca Ridge. Let’s see the results of subduction of the Juan de Fuca Plate.
Convergent Plate Boundaries

When two plates converge, what happens depends on the types of lithosphere that meet. The three possibilities are oceanic crust to oceanic crust, oceanic crust to continental crust, or continental crust to continental crust. If at least one of the slabs of lithosphere is oceanic, that oceanic plate will plunge into the trench and back into the mantle. The meeting of two enormous slabs of lithosphere and subduction of one results in magma generation and earthquakes. If both plates meet with continental crust, there will be mountain building. Each of the three possibilities is discussed in a different concept.

In this concept we look at subduction of an oceanic plate beneath a continental plate in the Pacific Northwest.

Ocean-Continent Convergence

When oceanic crust converges with continental crust, the denser oceanic plate plunges beneath the continental plate. This process, called subduction, occurs at the oceanic trenches. The entire region is known as a subduction zone. Subduction zones have a lot of intense earthquakes and volcanic eruptions. The subducting plate causes melting in the mantle above the plate. The magma rises and erupts, creating volcanoes. These coastal volcanic mountains are found in a line above the subducting plate (Figure 1.1). The volcanoes are known as a continental arc.

The movement of crust and magma causes earthquakes. A map of earthquake epicenters at subduction zones is found here: http://earthguide.ucsd.edu/eoc/teachers/t_tectonics/p_earthquakessubduction.html.

This animation shows the relationship between subduction of the lithosphere and creation of a volcanic arc: http://e
Remember that the mid-ocean ridge is where hot mantle material upwells in a convection cell. The upwelling mantle melts due to pressure release to form lava. Lava flows at the surface cool rapidly to become basalt, but deeper in the crust, magma cools more slowly to form gabbro. The entire ridge system is made up of igneous rock that is either extrusive or intrusive. The seafloor is also igneous rock with some sediment that has fallen onto it.

Cascades Volcanoes

The volcanoes of northeastern California —Lassen Peak, Mount Shasta, and Medicine Lake volcano —along with the rest of the Cascade Mountains of the Pacific Northwest, are the result of subduction of the Juan de Fuca plate beneath the North American plate (Figure 1.2). The Juan de Fuca plate is created by seafloor spreading just offshore at the Juan de Fuca ridge.

![Figure 1.2](image)

Intrusions at a Convergent Boundary

If the magma at a continental arc is felsic, it may be too viscous (thick) to rise through the crust. The magma will cool slowly to form granite or granodiorite. These large bodies of intrusive igneous rocks are called **batholiths**,
which may someday be uplifted to form a mountain range. California has an ancient set of batholiths that make up the Sierra Nevada mountains (Figure 1.3).

FIGURE 1.3
The Sierra Nevada batholith cooled beneath a volcanic arc roughly 200 million years ago. The rock is well exposed here at Mount Whitney. Similar batholiths are likely forming beneath the Andes and Cascades today.

Summary

- When two plates come towards each other they create a convergent plate boundary.
- The plates can meet where both have oceanic crust or both have continental crust, or they can meet where one has oceanic and one has continental.
- Dense oceanic crust will subduct beneath continental crust or a less dense slab of oceanic crust.
- The oceanic plate subducts into a trench, resulting in earthquakes. Melting of mantle material creates volcanoes at the subduction zone.
- If the magma is too viscous to rise to the surface it will become stuck in the crust to create intrusive igneous rocks.

Making Connections
Explore More

Use these resources to answer the questions that follow.

1. At what type of plate boundary do plates run into each other?
2. When one of the plates is oceanic, what happens?
3. What two things cause the mountain ranges that are the volcanic arc?
4. What is happening at a deep trench?
5. What happens when two continental plates run together?
6. What made Mt. Everest so high?

Review

1. What is the direction of plate motion at a convergent plate boundary?
2. Describe the relationship between the convection cell and subduction at a trench.
3. Subduction is sometimes called crustal recycling. Why do you think this is the case?
4. What happens if magma is too viscous to rise through the crust to erupt at the surface?

References

1. User:Booyabazooka/Wikipedia. Subduction of an oceanic plate beneath a continental plate causes earthquakes and forms a line of volcanoes known as a continental arc. Public Domain
2. Courtesy of US Geological Survey. The Cascade Mountains of the Pacific Northwest are a continental arc. Public Domain
3. User:Geographer/Wikipedia. Picture of Mount Whitney, which formed from the Sierra Nevada batholith cooling beneath a volcanic arc. CC BY 1.0