Course: 7th Grade Math

Student Objective
(Obj. 4b) TSW… find the circumference and area of circles.

Lesson
8-5 Textbook Pages: 394-397

Homework
Perimeter / Area Half Sheet (5 problems)

Last Night’s Homework
Area Worksheet (Berg created, 8 problems)

Bellwork
Get green quick notes and calculator. Work perimeter/area study guide problem #'s 1, 2, 5, 6, 7, 8

Prior Knowledge
- Review answers to the bellwork. Review last night's homework.
- Earlier in the week, we learned how to find the Perimeter of the different kinds of shapes. The perimeter is the distance around a figure.
- We also, learned how to calculate the Area of different shapes: Parallelograms, Trapezoids and Triangles!
- Does anyone remember a Real Life situation where you would use or see “perimeter” or “area”? Wait for student response. Hint…. I showed you a PowerPoint called “Areas of Disaster”. Does that ring a bell?
 Students will say..... Tornado disaster area, Rope off an area of a crime scene, Oil spill, Hurricane Katrina

Anticipatory Set
- Now, there is one more shape we need to talk about… Circles!
- Play X-Files audio.
- Show “Crop Circles” PowerPoint. Crop Circles… Are they Real or a Hoax?

Teacher Input
- Pass out student notes.
- Pass out green quick notes (area formula sheets).
- Define radius, diameter, and pi.
- Explain how to find the circumference of a circle using a formula. $C = \pi d$
- Have students work two you-try problems (independently).
- Explain how to find the area of a circle using a formula. $A = \pi r^2$
- Have students work two you-try problems (independently).
- Classwork: “Crop Circle Math”. (Kagan RallyRobin)
 TSW find the circumference and area of a real life crop circle.

Extra Practice:
FSP Pages 36, 44 (circled only)
Students may begin their study guide for test.

Assessment
Observation and questioning. Major text next class.

Closure
1) What formula do you use to find the circumference of a circle? $C = \pi d$
2) How do you find the circumference of a circle if they give you a radius instead of the diameter?
 First find the diameter: $2 \times r$, then $C = \pi d$
3) What formula do you use to find the area of a circle? $A = \pi r^2$
4) How do you find the area of a circle if you are given the diameter instead of the radius?
 First find the radius: $r = d \div 2$, then $A = \pi r^2$
New Vocabulary

Radius - Is the distance from the center of the circle to the outer edge.
Diameter - Is the distance from one side of the circle to the other.
Pi - Is a number used when working with circles. (Also known as 3.14)
The symbol for pi is π.

Finding the Circumference

The distance around a circle is call it’s Circumference (C).
Pi is a number used when working with circles. Also know as $\pi = 3.14$.

\[C = \pi d \]
\[C = \frac{3.14 \times 14}{3.14 \times 14} \]

Finding the Area

The Area (A) is the amount of space inside a circle.

\[A = \pi r^2 \]
\[A = \frac{3.14 \times 8^2}{3.14 \times 8^2} \]
Crop Circle Math!

Top circle: 15 ft diameter
Bottom circle: 17 ft diameter
Left circle: 16 ft diameter
Right circle: 14 ft diameter
Center circle: 64 ft diameter

Circumference is the distance around a circle. Find the circumference of each circle below.

\[C = \pi d \]

Top circle \[C = \underline{\quad} \text{ ft} \]
Bottom circle \[C = \underline{\quad} \text{ ft} \]
Left circle \[C = \underline{\quad} \text{ ft} \]
Right circle \[C = \underline{\quad} \text{ ft} \]
Center circle \[C = \underline{\quad} \text{ ft} \]

Area is the amount of space inside the circle. Find the area of each circle below.

\[A = \pi r^2 \]

Top circle \[r = \underline{\quad} \quad A = \underline{\quad} \text{ ft}^2 \]
Bottom circle \[r = \underline{\quad} \quad A = \underline{\quad} \text{ ft}^2 \]
Left circle \[r = \underline{\quad} \quad A = \underline{\quad} \text{ ft}^2 \]
Right circle \[r = \underline{\quad} \quad A = \underline{\quad} \text{ ft}^2 \]
Center circle \[r = \underline{\quad} \quad A = \underline{\quad} \text{ ft}^2 \]
Crop Circle Math!

Top circle: 15 ft diameter
Bottom circle: 17 ft diameter
Left circle: 16 ft diameter
Right circle: 14 ft diameter
Center circle: 64 ft diameter

Circumference is the distance around a circle. Find the circumference of each circle below.

\[C = \pi d \]

- Top circle: \(C = 47.1 \text{ ft} \) \[3.14 \times 15 \]
- Bottom circle: \(C = 53.38 \text{ ft} \) \[3.14 \times 17 \]
- Left circle: \(C = 50.24 \text{ ft} \) \[3.14 \times 16 \]
- Right circle: \(C = 43.96 \text{ ft} \) \[3.14 \times 14 \]
- Center circle: \(C = 200.96 \text{ ft} \) \[3.14 \times 64 \]

Area is the amount of space inside the circle. Find the area of each circle below.

\[A = \pi r^2 \]

- Top circle: \(r = 7.5 \) \(A = 176.625 \text{ ft}^2 \) \[3.14 \times 7.5^2 \]
- Bottom circle: \(r = 8.5 \) \(A = 226.865 \text{ ft}^2 \) \[3.14 \times 8.5^2 \]
- Left circle: \(r = 8 \) \(A = 200.96 \text{ ft}^2 \) \[3.14 \times 8^2 \]
- Right circle: \(r = 7 \) \(A = 153.86 \text{ ft}^2 \) \[3.14 \times 7^2 \]
- Center circle: \(r = 32 \) \(A = 3,215.36 \text{ ft}^2 \) \[3.14 \times 32^2 \]
Circumference of a Circle

Circumference \((C)\) is the distance around a circle. There are two formulas you can use to find circumference. Each formula uses \(\pi\). Let \(\pi = 3.14\).

\[
\begin{align*}
C &= \pi \cdot d \\
C &= 3.14 \cdot 6 \\
C &= 18.84 \text{ m} \\
\hline
C &= \pi \cdot d \\
C &= 3.14 \cdot 7.5 \\
C &= 23.55 \text{ mm}
\end{align*}
\]

Find the circumference of each circle. Round to the nearest tenth. You may use a calculator.

1. \(r = 6 \text{ cm}\)
 \[
 C = _____
 \]

2. \(d = 9 \text{ m}\)
 \[
 C = _____
 \]

3. \(r = 2.5 \text{ in.}\)
 \[
 C = _____
 \]

4. \(d = 25 \text{ mm}\)
 \[
 C = _____
 \]

5. \(r = 1.5 \text{ mi.}\)
 \[
 C = _____
 \]

6. \(d = 50.5 \text{ m}\)
 \[
 C = _____
 \]
Circumference of a Circle

Circumference (C) is the distance around a circle. There are two formulas you can use to find circumference. Each formula uses π. Let π = 3.14.

<table>
<thead>
<tr>
<th>d = 3.2</th>
<th>C = \pi \cdot d</th>
</tr>
</thead>
<tbody>
<tr>
<td>r = 3 m</td>
<td>C = 3.14 \cdot d</td>
</tr>
<tr>
<td></td>
<td>C = 18.84 m</td>
</tr>
</tbody>
</table>

Find the circumference of each circle. Round to the nearest tenth. You may use a calculator.

1. r = 5 cm
 - C = 31.4 m

2. r = 2.5 in.
 - C = 15.7 in

3. d = 25 mm
 - C = 78.5 mm

FS-10218 Introduction to Geometry
Area of Circles

To find the area of a circle, use the formula \(\pi r^2 \). Work with a calculator or on scratch paper. Round your answers to the nearest tenth. Write your answers in square units.

- \(r = 2 \text{ mm} \)
 - \(A = \pi r^2 \)
 - \(A = 3.14 \cdot (2)^2 \)
 - \(A = 3.14 \cdot 4 \)
 - \(A = 12.56 \text{ mm}^2 \)

A.

1. \(10 \text{ cm} \)
 - \(A = \) ____________
2. \(4.5 \text{ mm} \)
 - \(A = \) ____________
3. \(10.3 \text{ yd.} \)
 - \(A = \) ____________

B.

1. \(1.5 \text{ m} \)
 - \(A = \) ____________
2. \(4.1 \text{ ft.} \)
 - \(A = \) ____________
3. \(14.5 \text{ in.} \)
 - \(A = \) ____________

C.

1. \(12.3 \text{ dm} \)
 - \(A = \) ____________
2. \(9 \text{ mm} \)
 - \(A = \) ____________
3. \(0.8 \text{ cm} \)
 - \(A = \) ____________
Area of Circles

To find the area of a circle, use the formula πr^2. Work with a calculator or on scratch paper. Round your answers to the nearest tenth. Write your answers in square units.

A.

\[
\text{A} = \pi r^2
\]

\[
A = 3.14 \cdot (2)^2
\]

\[
A = 3.14 \cdot 4
\]

\[
A = 12.56 \text{ mm}^2
\]

\[
\text{A} = 314 \text{ cm}^2
\]

\[
\text{A} = 63.6 \text{ mm}^2
\]

\[
\text{A} = 333.1 \text{ yd}^2
\]

B.

\[
\text{A} = 7.1 \text{ m}^2
\]

\[
\text{A} = 52.8 \text{ ft}^2
\]

\[
\text{A} = 660.2 \text{ in}^2
\]

C.

\[
\text{A} = 475.1 \text{ dm}^2
\]

\[
\text{A} = 254.3 \text{ mm}^2
\]

\[
\text{A} = 2 \text{ dm}^2
\]
1) What is the perimeter of the following regular hexagon?

\[P = \text{________ } \text{in} \]

2) What is the perimeter & area of this shape?

\[P = \text{________ } \text{in} \]
\[A = \text{________ } \text{in}^2 \]

3) James is building a circular deck that is 10 ft. in diameter. What is the area of the deck. \(\text{_____} \text{ft}^2 \)

4) Jimmy races around a track that is 100 m in diameter.

What is the distance he travels in 1 rotation \textit{around} the track? \(\text{_______} \text{m} \)

Be careful! Does the word \textit{around} pertain to area or circumference?

5) Find the area of the shaded region of this irregular figure. \(\rightarrow \)

\[\text{Hint: } \text{Find the area of the triangle: } \text{A} = \text{_______} \]
\[\text{Subtract the area of the rectangle: } \text{A} = \text{_______} \]

\[\text{Area of the shaded region} = \text{_______} \text{ft}^2 \]
<table>
<thead>
<tr>
<th>Area Formulas</th>
<th>Circles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallelogram $A = b \times h$</td>
<td>Circumference $C = \pi d$</td>
</tr>
<tr>
<td>Rhombus $A = b \times h$</td>
<td>Area $A = \pi r^2$</td>
</tr>
<tr>
<td>Rectangle $A = b \times h$</td>
<td></td>
</tr>
<tr>
<td>Square $A = b \times h$</td>
<td></td>
</tr>
<tr>
<td>Triangle $A = \frac{1}{2} \times b \times h$</td>
<td></td>
</tr>
<tr>
<td>Trapezoid $A = \frac{1}{2} \times (b_1 + b_2) \times h$</td>
<td></td>
</tr>
</tbody>
</table>
1) What is the perimeter of the following regular hexagon?

\[P = 36 \text{ in} \]

2) What is the perimeter & area of this shape?

\[P = 82 \text{ in}, \quad A = 336 \text{ in}^2 \]

3) James is building a circular deck that is 10 feet in diameter. What is the area of the deck? 78.5 ft²

4) Jimmy races around a track that is 100 m in diameter. What is the distance he travels in 1 rotation around the track? 314 m

Be careful! Does the word \textit{around} pertain to area or circumference?

5) Find the area of the shaded region of this irregular figure. \rightarrow

\textbf{Hint:} Find the area of the triangle: \[A = 63 \]

Subtract the area of the rectangle: \[A = 19.5 \]

Area of the shaded region = 43.5 ft²