Section 9-1: Inverse Variation (p478)

- Recall: Direct Variation(DV) "y varies directly with x"

 Linear
 Equation: y = Kx multiply
 Constant of variation = k

 Inverse Variation(IV) "y varies inversely withx"

 exponential
 Equation: y = Kx divide
- To tell whether the relationship among a set of numbers is direct, inverse, or neither, plot the points. Direct variation is a linear relationship and inverse variation is an exponential relationship. Now try to find the constant of variation (k). If the value for k is the same for each of the points, then there is variation (whether it is direct or inverse).
- · Combined Variation:

Example of Combined Variation

** Remember: Direct Variation (y = _____) and Inverse Variation (y = _____)

Constant of variation (k) =

Combined Variation	Equation Form
y varies directly with the square of x	y = KX
y varies inversely with the cube of x	V= MX
z varies jointly with x and y	Z=KXY
z yaries jointly with x and y and inversely with w	# ~ / W
z zaries jointly with x and inversely with the product of w	WY
andy	- 1 · · · · · · · · · · · · · · · · · ·

^{**} z varies jointly with x and y is the same as z varies directly with the product of x and y

1) EXAMPLE Modeling Inverse Variation

Suppose that x and y vary inversely, and $\underline{x} = 3$ when y = -5.

Write the function that models the inverse variation.

$$y = K$$
 Find $k \to k = Xy$
 $k = 3(-5) = -15$
 $y = -15$

Cu#1) IV
$$x=0.3$$
 when $y=1.4$
 $y=0.42$

2 EXAMPLE Identifying Direct and Inverse Variations

Is the relationship between the variables in each table a direct variation, an inverse variation, or neither? Write functions to model the direct and inverse variations.

a.

_			
Х	0.5	2	6
у	1.5	6	18

202 P √V+=

Х	0.5	2	6
у	1.5	6	18

$$k = \frac{y}{x} = \frac{1.5}{.5} = \frac{6}{2} = \frac{18}{6}$$

$$3 = 3 = 3$$

DV
$$K=3$$

 $Y=3x$ $(y=kx)$

x 0.2 0.6 1.2 y 12 4 2	Looks Exponential Probably IV
x = xy 0.2 0.6 1.2	
12 4 2	IV K=2.4
K=Xy=0.2(12)=0.6(4)=1.2(2) 2.4 = 2.4 = 2.4	$y = \frac{2.4}{X}$
c.	
Even though the points look exponential, this is NOT IV because the K's 18	
are not the same	Neither

Ъ.

Real-World **()** Connection いなは y vary inversely "

Zoology Heart rates and life spans of most mammals are inversely related. Use the data to write a function that models this inverse variation. Use your function to estimate the average life span of a cat

with a heart rate of 126 beats/min.

Heart Rate and Life Span

Mammal	Heart rate (beats/min)	Life span (min)
Mouse	634	1,576,800
Rabbit	158	6,307,200
Lion	76	13,140,000
Horse	63	15,768,000

Source: The Handy Science Answer Book

k= xy

K≈ 1,000,000,000

$$y = 1,000,000,000$$

$$y = 1,000,000,000$$
126
 $y = 8,000,000 \text{ min}$

Suppose that x and y vary inversely. Write a function that models each inverse variation and find y when $x \equiv 10$.

13.
$$x = 20$$
 when $y = 5$

(a) Find
$$k = xy$$
 (b) Find $y = x = 100$

$$\begin{cases}
Y = 100 \\
Y = 100 \\
X
\end{cases}$$

Write the function that models each relationship. Find z when x = 4 and y = 9.

25. z varies jointly with x and y. When
$$x = 2$$
 and $y = 3$, $z = 60$.

© Find K

 $Z = KXY$
 $W = 4$
 $W = 9$
 $W = 60$

Use to find K

 $W = 2$
 $W = 10$
 $W = 3$
 $W = 3$

26. z varies directly with the square of x and inversely with y. When x = 2 and y = 4, z = 3 use to find k

(a) Find k

$$Z = \frac{16}{4}$$
 $Z = \frac{3}{4}$
 $Z = \frac{3}{4}$

Describe the combined variation that is modeled by each formula.

16.
$$A = \pi r^2 \rightarrow DV$$
 $k = constant = \pi$

A varies directly with the square of r

23.
$$\ell = \frac{V \rightarrow DV}{wh \rightarrow TV}$$

l varies directly W V & inversely W/ the product of w & h

4 EXAMPLE Real-World (Connection

Physics Newton's Law of Universal Gravitation is modeled by the formula $F = \frac{Gm_1m_2}{d^2}$. F is the gravitational force between two objects with masses m_1 and m_2 , and d is the distance between the objects. G is the gravitational constant. Describe Newton's law as a combined variation.

$$F = \underbrace{\mathbb{G}_{M_1 M_2}}_{d^2 \to IV}$$
 $k = G$

F varies jointly by m, & m, & m, & m & & inversely with the square of d

From Enrichment WS

1)
$$Z = \frac{ky^2}{X}$$
 Find $k = 2 y = 4 z = 16$
 $| k = \frac{k(4)^2}{2}$ Find $| k = 2 y = 1$
 $| k = \frac{k(4)^2}{2}$ Find $| k = 2 y = 1$
 $| k = \frac{k(4)^2}{2}$ Find $| k = 2 y = 1$
 $| k = \frac{k(4)^2}{2}$ Find $| k = 2 y = 1$
 $| k = \frac{k(4)^2}{2}$ Find $| k = 2 y = 4 z = 16$