
Course Overview
AP® Computer Science A emphasizes a study in object-oriented programming
methodologies with a focus on problem solving and algorithm development. Data
structures, design, and abstraction are also covered, but not in the depth that would be
appropriate for an AB course. Also, an examination of a large case study program is
undertaken, and students are expected to be able to understand and modify code that they
have not written. Hands-on laboratory work is used to solidify each concept, and end-of-
unit labs and tests are used to assess the progress of each student.

Once the AP® Computer Science A Exam has been completed, students have the
opportunity to apply their knowledge in a new setting, using LEGO® MindStorms™
robots that they design, build, and program. Using the LEJOS operating system and the
TextPad IDE, students are given the opportunity to use Java to program robots that can
interact with their settings.

Computer Facilities/Lab Component
A dedicated lab of 21 computers is directly attached to our classroom, which provides the
perfect environment for teaching the AP® Computer Science A curriculum. Once a
concept has been discussed in the classroom setting, only seconds pass before we are
experimenting with and implementing the concepts that were covered. The instructor has
administrative rights to install software, as well as to access the shared drives of the
students. Students have access to the lab before school, during their lunch, and after
school.

Course Resources
Bergin, Joseph, et al. Karel J. Robot: A Gentle Introduction to the Art of Object-Oriented
Programming Using Java. Copyright Joseph Bergin.
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html

Bloss, Adrienne and N. Jane Ingram. Lab Manual to Accompany Java Software
Solutions. New York, New York: Pearson Education, Inc, 2003.

College Board. AP GridWorld Case Study. New York: College Entrance Examination
Board, 2006.

Lewis, John, William Loftus, and Cara Cocking. Java Software Solutions for AP
Computer Science A, 2nd Edition. New York, New York: Pearson Education, Inc, 2007.

Lewis, John, William Loftus, and Cara Cocking. Instructor’s Resource Manual to
Accompany Java Software Solutions. New York, New York: Pearson Education, Inc,
2004.

Course Outline

Unit Title, Topics, and Student
Objectives

Resources, Assessments, and
Strategies

1 Introduction to the principal
concepts in computer science using
Karel J. Robot

Topics:
• Objects
• Classes
• Looping
• Conditionals

Objectives:
• Write and use simple classes

with Karel J. Robot
• Learn the basics of conditionals

and looping in a Java
environment

• Reinforce the introductory
concepts of the Java
programming language

• Reinforce the steps involved in
program compilation/execution

Resource:
Karel J. Robot

Sample Assessments:
• Program specific tasks for Karel
• Create an enhanced Robot class

to expand the number of
commands that Karel
understands

• Use loops to clear a field of
beepers

• Use loops and conditionals to
redistribute a field of beepers

• Use loops and conditionals to
run a hurdle race of varying
lengths and hurdle sizes

2 Introduction to the computer,
ready-made programming
environments, and Java basics

Students also walk through Part
One of the GridWorld Case Study.

Topics:
• Computer hardware and

software
• Computer networks
• Representing numbers in

different bases
• Java program features

(comments, identifiers, reserved
words)

• Ethical and social implications
of computer use

Objectives:
• Describe the relationship

Resources:
• AP GridWorld Case Study
• Lewis, Loftus, Cocking:

Chapter One

Sample Assessments:
• Student presentation (one topic

per student) on hardware
components, computer
architecture, or computer
networking

• Self-made “History of
Programming” quiz

Strategies:
• Students will have a mock

debate in which students
argue/defend both sides of a
current topic in computer ethics
(e.g. pirating music, making
copies of programs, etc.)

between hardware and software
• Define various types of

software and how they are used
• Identify basic computer

hardware and explain what it
does

• Explain how hardware
components execute programs
and manage data

• Describe how computers are
connected together into
networks to share information

• Understand computer ethics
such as acceptable use policies,
copyright, intellectual property,
freeware and shareware

3 Objects, primitive data, variables,
and expressions

Topics:
• Program development
• Reinforcement of objects and

classes
• Primitive data types
• Strings and escape sequences
• Variables and assignment
• Expressions
• Data conversion and data types
• Simple input/output
• Random number generation
• Libraries and packages
• Formatting output

Objectives:
• Discuss basic program

development steps
• Understand terminology:

variables, constants, reserved
words, literals

• Define the difference between
primitive data and objects

• Declare and use variables
• Perform mathematical

computations
• Create objects and use them
• Reinforce aforementioned

Resources:
• Lewis, Loftus, Cocking:

Chapter Two and Three
• Lewis, Loftus, Cocking:

Chapter 2 Internet AP
GridWorld tie-in supplement

Sample Assessments:
• Chapter questions, multiple

choice, true/false, short answer
• Sum/difference/product

program: Write an application
that reads floating point
numbers and computes their
sum, difference, and product

• Random phone number
program: Write an application
that creates and prints a random
phone number in a specified
format

Strategies:
• Students are led through their

first “pure” Java program
(Hello World) in order to
explore the format of a properly
written program

• Students need multiple
examples and practice with
types and type conversions,

chapter objectives through the
use of the GridWorld case study

especially when they are used in
mathematical expressions

4 Conditionals and Repetition

Topics:
• Flow of control
• The if statement
• Equality, relational,

increment/decrement, and
assignment operators

• Logical operators
• Short-circuiting
• The while statement
• The for statement
• Infinite loops
• Nested loops
• Iterators

Objectives:
• Define the flow of control

through a program
• Reinforce the use of if

statements
• Define expressions that let us

make complex decisions
• Reinforce the use of while and

for statements to repeat
programmatic actions

• Reinforce aforementioned
chapter objectives through the
use of the GridWorld case study

Resources:
• Lewis, Loftus, Cocking:

Chapter Three
• Bloss and Ingram: Lab Manual
• Lewis, Loftus, Cocking:

Chapter 3 Internet AP
GridWorld tie-in supplement

Sample Assessments:
• Chapter questions, multiple

choice, true/false, short answer
• “Computing a Raise” lab
• “Charge Account” lab
• “Date Validation” lab
• “Rock, Paper, Scissors” Lab
• “Factorials” lab
• “Counting Vowels” lab

Strategies:
• Students need practice writing

different types of loops and
conditionals

5 Writing classes, enhancing classes,
and inheritance

Topics:
• Creating and using classes
• Inheritance
• Abstract classes
• Interfaces
• Polymorphism

Objectives:
• Define classes that act as

blueprints for new objects
• Explain encapsulation and Java

modifiers

Resources:
• Lewis, Loftus, Cocking:

Chapters Four, Five, and Seven
• Bloss and Ingram: Lab Manual
• Lewis, Loftus, Cocking:

Chapters 4, 5, and 7 Internet AP
GridWorld tie-in supplement

Sample Assessments:
• Chapter questions, multiple

choice, true/false, short answer
• “Coin Class” lab
• “Bank Account” lab
• “Tracking Grades” lab”
• “Tracing References” lab

• Explore the details of method
declaration, invocation,
parameter passing, and
overloading

• Learn to divide complex
methods into simpler supporting
methods

• Describe relationships between
objects

• Define reference aliases
• Define formal interfaces and

their class implementations
• Derive new classes from

existing classes through the use
of inheritance

• Add and modify methods in
child classes

• Discuss how to use class
hierarchies

• Define polymorphism and
methods to achieve it

• Reinforce aforementioned
chapter objectives through the
use of the GridWorld case study

• “Counting Transactions” lab
• “Exploring Inheritance” lab
• “Test Questions” lab

Strategies:
• Give students classes to

complete, in which they are
given a description and they
must choose appropriate
representation for that class

• Draw pictures of the inheritance
hierarchy

6 Advanced programming structures
and algorithms (arrays/ArrayLists,
and sorting/searching algorithms)

Topics:
• Declaring and initializing arrays
• Manipulating arrays with loops
• Creating parallel arrays
• Using the ArrayList class
• Bubble, Selection, and Insertion

sorts
• Sequential and Binary searches

Objectives:
• Understand terminology: array,

element, index, logical size,
physical size, parallel arrays

• Declare one-dimensional arrays
in Java

• Use initializer lists when
declaring arrays

• Manipulate arrays using loops

Resources:
• Lewis, Loftus, Cocking:

Chapter Six
• Bloss and Ingram: Lab Manual
• Lewis, Loftus, Cocking:

Chapter 6 Internet AP
GridWorld tie-in supplement

Sample Assessments:
• Chapter questions, multiple

choice, true/false, short answer
• “Tracking Sales” lab
• “Grading Quizzes” lab
• “Reversing an Array” lab
• “Searching/Sorting Within an

Integer List” lab
• “ArrayList Shopping Cart” lab

Strategies:
• Students need to be reminded

that array indices start at zero
• Students need materials to

and array indices
• Use the physical and logical

size of an array to guarantee
they do not go beyond the
bounds of the array

• Understand how parallel arrays
can be useful when processing
certain types of data

• Work with arrays of primitives
and well as objects

• Understand when to choose an
array to represent data instead
of an ArrayList

• Use the ArrayList methods
• Write a method for searching an

array
• Perform insertions and deletions

at given array positions
• Trace through sorting and

searching algorithms to
understand time constraints of
each

• Understand the algorithms
behind bubble, selection, and
insertion sorts and sequential
and binary searches

• Understand the time efficiency
of each sort and search and
when it is desirable to use each
one

• Reinforce aforementioned
chapter objectives through the
use of the GridWorld case study

reinforce the use of looping
through elements of an array

• Stress the difference between
add and set

• Draw pictures of the ArrayList
after ArrayList methods have
been used

• Use one of several Internet sites
that show the runtime and
efficiency of each of the
strategies they have learned

7 Recursion and Merge Sort

Topics:
• Recursion
• Merge Sort

Objectives:
• Create a recursive method to

solve a problem
• Understand the difference

between recursive and iterative
solutions to a problem

• Understand and use the Merge

Resources:
• Lewis, Loftus, Cocking:

Chapter Eight
• Bloss and Ingram: Lab Manual
• Lewis, Loftus, Cocking:

Chapter 8 Internet AP
GridWorld tie-in supplement

Sample Assessments:
• Chapter questions, multiple

choice, true/false, short answer
• “Palindrome Checker” lab
• “String Backwards” lab

Sort
• Understand how to calculate the

informal runtime of merge sort
and compare its running time to
the other sorts already learned

• Reinforce aforementioned
chapter objectives through the
use of the GridWorld case study

• “Base Conversion” lab
• Self-made recursion worksheet

Strategies:
• Recreate the “Towers of Hanoi”

using Fisher-Price ring sets

8 AP GridWorld Case Study
(continued)

Topics:
• Experimenting with a large

program
• Using classes
• Modifying classes
• Inheritance

Objectives:
• Run the case study and analyze

output
• Understand how the

development of a large program
came about by reading the
chapters of the case study

• Observe and experiment with
the GridWorld case study

• Understand the Bug class,
Runner class, Grid Interface

• Extend the Bug class by
creating a specialized bug to
meet new requirements

• Use inheritance to extend the
Critter class by making new
types of critters

Resources:
• AP GridWorld Case Study

Sample Assessments:
• Exercises from within the case

study

Strategies:
• Read the manual for the case

study thoroughly
• Be familiar with all the classes

and interfaces discussed
• Allow the students to be

creative after working through
the exercises and analysis

• Create different kinds of
Critters

9 Getting Ready for the AP Exam

Topics:
• Review AP Computer Science

A topics

Objectives:
• Prepare for the AP Computer

Science A Exam by reviewing
material and taking practice
exams

Resources:
• Previous free-response

questions from AP Central

Sample Assessments:
• Practice Exams

10 Robotics Using Java

Topics:
• Movement
• Navigation
• Light sensors
• Touch Sensors
• Behavior Arbitration
• RCX Communication

Objectives:
• Transfer Java programming

concepts and techniques learned
throughout the course of the
year to a new setting and
environment

• Design, build, and test Java
programs that solve a number of
problems

• Use the Lejos API to expand
their knowledge of the Java
programming language

Resources:
• LEGO® MindStorms™ kits
• Various Internet sites (most

importantly, www.lejos.org)
• Various self-made handouts and

presentations

Sample Assessments:
• “Line Follower” task
• “Boundary” task
• “Hit-backup-turn” task
• “Green-Red Liner” task
• “Sumobot” task

Strategies:
• Students are encouraged to have

fun and be creative
• Tasks are not given hard

delivery dates, but a Task
Signoff sheet must be
completed by the end of the
marking period

Correlation to AP Topic Outline
This section shows correlation between the “Computer Science A” column of the Topic
Outline in the AP Computer Science Course Description and each unit of this syllabus.

AP Computer Science A Topics Unit Where
Covered

I. Object-Oriented Program Design
The overall goal for designing a piece of software (a computer program) is to correctly
solve the given problem. At the same time, this goal should encompass specifying and
designing a program that is understandable, can be adapted to changing circumstances,
and has the potential to be reused in whole or in part. The design process needs to be
based on a thorough understanding of the problem to be solved.
A. Program design

1. Read and understand a problem description, purpose, and
goals.

All units

2. Apply data abstraction and encapsulation. Units 3 and 5
3. Read and understand class specifications and
relationships among the classes (‘‘is-a,’’ ‘‘has-a’’
relationships).

Unit 5

4. Understand and implement a given class hierarchy. Unit 5

5. Identify reusable components from existing code using
classes and class libraries.

Unit 5

B. Class design
1. Design and implement a class. Unit 5
2. Design an interface Unit 5
3. Choose appropriate data representation and algorithms. Units 4 and 5
4. Apply functional decomposition. Unit 5
5. Extend a given class using inheritance. Unit 5

II. Program Implementation
The overall goals of program implementation parallel those of program design.
Classes that fill common needs should be built so that they can be reused easily in
other programs. Object-oriented design is an important part of program
implementation.
A. Implementation techniques

1. Methodology
a. Object-oriented development Unit 3
b. Top-down development Unit 4
c. Encapsulation and information hiding Unit 5
d. Procedural abstraction Unit 5

B. Programming constructs
1. Primitive types vs. objects Unit 3
2. Declaration

a. Constant declarations Unit 3
b. Variable declarations Unit 3
c. Class declarations Unit 5
d. Interface declarations Unit 5
e. Method declarations Unit 5
f. Parameter declarations Unit 5

3. Console output (System.out.print/println) Unit 3
4. Control

a. Methods Unit 5
b. Sequential Unit 4
c. Conditional Unit 4
d. Iteration Unit 4
e. Recursion Unit 7

C. Java library classes (included in the A-level (AP Java Subset) Units 3 and 5
III. Program Analysis
The analysis of programs includes examining and testing programs to determine
whether they correctly meet their specifications. It also includes the analysis of
programs or algorithms in order to understand their time and space requirements when
applied to different data sets.
A. Testing

1. Test classes and libraries in isolation. Unit 5
2. Identify boundary cases and generate appropriate test
data.

Unit 5

3. Perform integration testing. Unit 5
B. Debugging

1. Categorize errors: compile-time, run-time, logic. Units 2 and 3
2. Identify and correct errors. Units 2, 3, 6,

and 7
3. Employ techniques such as using a debugger, adding
extra output statements, or hand-tracing code.

Units 2, 3, 6,
and 7

C. Understand and modify existing code Units 2, 3, 4, 5,
6, 7, and 8

D. Extend existing code using inheritance Unit 5
E. Understand error handling

1. Understand runtime exceptions. Unit 5
F. Reason about programs

1. Pre- and post-conditions Unit 5
2. Assertions Unit 5

G. Analysis of algorithms
1. Informal comparisons of running times Units 6 and 7
2. Exact calculation of statement execution counts Units 6 and 7

H. Numerical representations and limits
1. Representations of numbers in different bases Unit 2
2. Limitations of finite representations (e.g., integer bounds,
imprecision of floating-point representations, and round-off
error)

Units 3 and 4

IV. Standard Data Structures
Data structures are used to represent information within a program. Abstraction is an
important theme in the development and application of data structures.
A. Simple data types (int, boolean, double) Unit 3
B. Classes Units 3 and 5
C. One-dimensional arrays Unit 6
V. Standard Algorithms
Standard algorithms serve as examples of good solutions to standard problems. Many
are intertwined with standard data structures. These algorithms provide examples for
analysis of program efficiency.
A. Operations on A-level data structures previously listed

1. Traversals Unit 6
2. Insertions Unit 6
3. Deletions Unit 6

B. Searching
1. Sequential Unit 6
2. Binary Unit 6

C. Sorting
1. Selection Unit 6
2. Insertion Unit 6
3. Mergesort Unit 7

VI. Computing in Context
A working knowledge of the major hardware and software components of computer
systems is necessary for the study of computer science, as is the awareness of the
ethical and social implications of computing systems. These topics need not be
covered in detail but should be considered throughout the course.
A. Major hardware components

1. Primary and secondary memory Unit 2
2. Processors Unit 2
3. Peripherals Unit 2

B. System software
1. Language translators/compilers Unit 2
2. Virtual machines Unit 2
3. Operating systems Unit 2

C. Types of systems
1. Single-user systems Unit 2
2. Networks Unit 2

D. Responsible use of computer systems
1. System reliability Unit 2
2. Privacy Unit 2
3. Legal issues and intellectual property Unit 2
4. Social and ethical ramifications of computer use Unit 2

	Course Overview
	Computer Facilities/Lab Component
	
	Course Resources
	Course Outline
	
	Correlation to AP Topic Outline

