Name	Date
110000	

8 Calorimetry: Heat of Crystallization of Wax

Introduction

The process of crystallization (solidification) is the exact opposite of the process of fusion (melting). When a substance changes form liquid to solid, heat is released. This is an exothermic change.

When crystallization takes place in a calorimeter, the water will absorb energy. The same relationships that you applied in Lab 7 will be used to calculate the heat of crystallization in this lab.

Introductory questions

- 1. When does crystallization begin?
- 2. What is the mass of 1 mL of water?
- 3. Will the temperature of the water in the calorimeter increase or decrease? Explain.
- 4. What is the specific heat of water?

Problem

How can you determine the heat of crystallization of wax?

Equipment

Graduated cylinder, 100-mL

ring stand

Beaker, 250-mL

lab burner wire gauze

Styrofoam cup Thermometer

safety glasses

Test tube holder

Materials

Test tube containing 10.0g of wax

1. In a 250-mL beaker heat about 200 mL of water to boiling.

- 2. Place the test tube containing the 10.0 g sample of wax, into the beaker of boiling water.
- 3. Gently rotate the tube (be careful of steam) until all of the wax is melted.
- 4. Measure 100 ml of cold tap water and pour it into the Styrofoam cup.
- 5. Using a test tube holder remove the test tube containing the wax from the beaker of boiling water. Turn your burner off.
- Hold the test tube up to the window or light and look for the first sign of cloudiness. This indicates that crystallization has started.
- 7. Immediately take the temperature of the water in the Styrofoam cup and then place the test tube in the cup with the cold water. Record the temperature. (T₁)
- 8. Rotate the test tube while the wax is solidifying. Constantly watch the temperature of the water.

9. When the temperature of the water has stopped increasing, Record this temperature. (T₂)

Observations and data

Mass of water in calorimeter (m ₁)	g
Mass of wax sample (m ₂)	10.0g
T_1	°C
T ₂	°C

Calculations

1. Find the change in temperature of the water. ($\Delta T = T_2 - T_1$)

2. Find the heat gained by the water. ($\Delta Q = m_1 \times \Delta T \times C_p$)

3. Find the heat of crystallization of wax. ($\Delta Q \div m_2$)

Conclusions and Questions

1. Define the term of heat of crystallization. What unit is used to express this property?

2. Explain why this experiment could not be conducted using a mixture.

3. How does the heat of fusion compare to the heat of crystallization of the same substance?