Calculating densities of rocks and minerals

Problem 1: You have a rock with a volume of 15 cm 3 and a mass of 45 g . What is its density?

Problem 2: You have a different rock with a volume of 30 cm 3 and a mass of 60 g . What is its density?

Problem 3: In the above two examples which rock is heavier? Which is lighter?

Problem 4: In the above two examples which rock is more dense? which is less dense?

Problem 5: You decide you want to carry a boulder home from the beach. It is 30 centimeters on each side, and so has a volume of $27,000 \mathrm{~cm} 3$. It is made of granite, which has a typical density of $2.8 \mathrm{~g} / \mathrm{cm} 3$. How much will this boulder weigh?

Problem 6: Rocks are sometimes used along coasts to prevent erosion. If a rock needs to weigh 2,000 kilograms (about 2 tons) in order not to be shifted by waves, how big (what volume) does it need to be? You are using basalt, which has a typical density of $3200 \mathrm{~kg} / \mathrm{m} 3$

Problem 7: A golden-colored cube is handed to you. The person wants you to buy it for $\$ 100$, saying that is a gold nugget. You pull out your old geology text and look up gold in the mineral table, and read that its density is $19.3 \mathrm{~g} / \mathrm{cm} 3$. You measure the cube and find that it is 2 cm on each side, and weighs 40 g . What is its density? Is it gold? Should you buy it?

