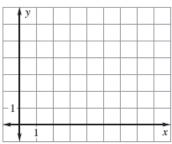

Assignment 60 LESSON 7.2 Practice A

Tell whether the triangle is a right triangle.

Decide whether the numbers can represent the side lengths of a triangle. If they can, classify the triangle as *acute, right,* or *obtuse*.

4. 6, 8, 10


- **5.** 5, 7, 9
- **6.** 8, 9, 10
- **7.** 10, 12, 30
- **8.** 16, 30, 34
- **9.** 18, 34, 45

Graph points A, B, and C. Connect the points to form $\triangle ABC$. Decide whether $\triangle ABC$ is *acute*, *right*, or *obtuse*.

10. A(1, 5), B(1, 1), C(6, 1)

- 1	y					
1						
	1	i				x

Dáte <u>A(2, 4), B(4, 1), C(7, 1)</u>

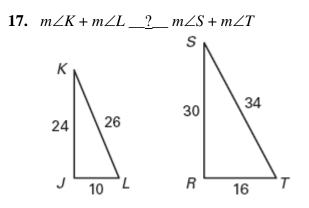
12. *A*(-2, 1), *B*(2, 1), *C*(0, 5)

		-	y			
		-1				
-		,	, 1	1		x

13. *A*(3, -2), *B*(1, 0), *C*(7, 2)

- 1	У				
1					
. 1.					
	1				x
_	1				x
	1				x
	1				x

14. *A*(0, 2), *B*(3, 3), *C*(5, 1)

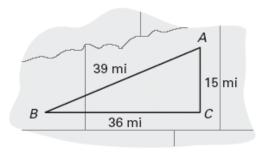

	y					
-1-						
•						-
1	1	1				x

15. *A*(-1, 1), *B*(-2, -4), *C*(2, -3)

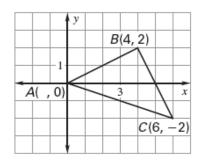
		- /	y			
		-1-				
~		1				-
			1	l 		x
		1	1			

In Exercises 16 and 17, copy and complete the statement with <, >, or =, if possible. If it is not possible, *explain* why.

16. $m \angle J _ ? _ m \angle R$


- 18. Multiple Choice What type of triangle has side lengths of 4, 4, and 4?
 A. Acute scalene B. Acute equilateral
 C. Obtuse scalene D. Obtuse isosceles
- **19. Multiple Choice** What type of triangle has two of the three angles with measurements of 24° and 105°?

A. Acute	B. Right
C. Obtuse	D. None


In Exercises 20 and 21, use the diagram and the following information.

Maps The distances between three towns are given in the diagram.

- **20.** Is the triangle ($\triangle ABC$) formed by the three towns a right triangle?
- **21.** Town *B* is directly west of town *C*. Is town *A* directly north of town *C*?

In Exercises 22 and 23, you will use two different methods for determining whether $\triangle ABC$ is a right triangle.

- **22.** Method 1 Find the slope of \overline{AB} and the slope of \overline{BC} . What do the slopes tell you about $\angle ABC$? Is $\triangle ABC$ a right triangle?
- **23.** Method 2 Use the Distance Formula and the Converse of the Pythagorean Theorem to determine whether $\triangle ABC$ is a right triangle.