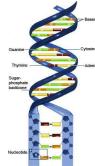

What is a Nucleic Acid?



DNA and RNA

Nucleic Acids

Thymine (T)

RNA Structure

- A single chain of nucleotides
- Has a sugar called ribose
- Has one of the following bases:
 - Cytosine (C)
 - Guanine (G)
 - Adenine (A)
 - Uracil (U)

DNA vs RNA

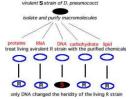
	DNA	RNA				
Nitrogen bases	 Cytosine (C) Guanine (G) Adenine (A) Thymine (T) 	 Cytosine (C) Guanine (G) Adenine (A) Uracil (U) 				
Sugar	deoxyribose	ribose				
Molecule structure and shape	DOUBLE HELIX	SINGLE CHAIN OF NUCLEOTIDES				

History of DNA's Discovery

 1869 Johann Friedrich Miescher first discovers DNA

History of DNA's discovery

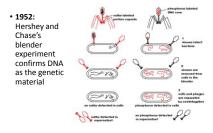
 1928 Franklin Griffith discovers that genetic information can be transferred from heat-killed bacteria cells to live ones. Provided key evidence that DNA is genetic material.


History of DNA

How was DNA's structure and function discovered?

History of DNA's Discovery

 1944 Oswald Avery, Maclyn McCarty and Colin MacLeod, identify Griffith's transforming agent as DNA vindent 5 strain of D. pneumococci



History of DNA's Discovery

 1949 Erwin Chargaff reports that DNA composition is species-specific.
 Chargaff finds that the amount of adenine equals the amount of thymine, and the amount of guanine equals the amount of cytosine in DNA from every species.

History of DNA's Discovery

History of DNA's Discovery

1953 James Watson and Francis Crick discover the molecular structure of DNA

- If something is very large or very long, how do you get it to fit in a tiny space?
- The human genome is 3 billion base pairs. If lined up end to end, the DNA from a single cell would stretch about 1.8 meters. All DNA must fit in the nucleus; how do you think the cell accomplishes this?

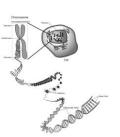
DNA Packaging

• How does all that DNA fit in one tiny nucleus?

Understanding DNA

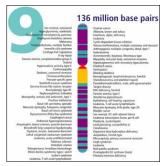
• What is DNA?

- DNA, genes, and chromosomes are all the molecular basis for heredity
- In other words, they carry all of the information and are passed on from parents to offspring


What is DNA?

- DNA: a nucleic acid made up of monomers called nucleotides
 - DNA carries the 'instructions' for making proteins
 - In other words, your body 'knows' what protein to make based on how the nucleotides are arranged

144	out	-		-	12	164	14	-	**	ita citi	14	00	cta tpa	cit cal	-	MI NO	01	18a 18a	gia.	-241
800	oal			14	144	-		000	37	in .		008	2	ate	-	000	÷.	104	144	-121
133	Las.	1028		ina i	418	611	5	544	inc.	ine.		01	27	tan	-	(040 (240		194	-	-121
886	000	inter.		101	an.	10	-	-		13.3	104			144	-	880	94	0.0	85	-03
ATO	AAC 1	AAD	ACT	CTC	ATC	TTA	001	TTA	arr						ACT		100	100	100	60
GTT	001	TTO	CAD	840	CAC	TOT	040	440	470	4.04	OTT	0.00	14.4	0.40	200	600	200	1000		120
AND	CAN	TTC	JAD	CAA	ACT	TAC	AAT	440	440	TAT	007	GAT	200	1000	1000	GAA	AUT	210	THU	120
TTC																				245
TAA	TTC	ATO	OAC	TTA	ACT	COT	OCT	OAA	TTO	0.07	044			0000	200	THA .	001	0.00	muu.	310
OTT	AAC	AGC	ADD	GAA	OTT	TAC	4.64	0.07	74.4	-104	-102	-199	-133	-214	-34	and	468	-900	<u>~~</u>	300
240	661	MAG	MC	ACC		GTT			744		-200		0.01	200	201	TGG		<u> </u>	000	
ACC	ATT		000	GTT	644	TOY		1000	100	ATT	10.14	0.07	-	100	100	TAA	901	TIC	166	420
440	OTT	607	044	244		244	0001	210	100	200	99.1	001	Law .	Gat	644	GAC	AAG	ACT	CIT	480
100	AAD	0.07	0.00	100	470	1.100	211	0.00	101	OUT	200	100	000	AAG	140	AAG	TCT	0.44	QQT	540
ACT	0.07	440	TAT	000	TAC	ACT	007		047	AAU .	100	ALC	ATC	GAC .	AAC	TCT	ATC	TOC	TAA	000
440	THE	TOT		1000	110	TIO	001	211	-	001	~~~~	100	~~~	CAC.	ACC	TOC	TOC	110	AAG	650
600	TTA	044	244	007	222	170	1001	OTT I	ALC	CCC	144	931	GAC	TOC	140	TAA	CTC	N/C	TCT	720
TOT	DOT	are	TTT		140	700	100		961		1441	907	468	446	119	***	110.	IAC.	AGT.	760
100		100	YOW	-992	-00%	100	<u></u>	714	-005	810	- 200	CAD	001	010		AAD	<u> 011</u>		AAC .	840
170	101	- 10-	101	010	~	210	~~~	~~~	100	104	bar	001	101	100	001	GAA	AAG	GGT	TTC	600
TGA	MOA.	111.4	dia.	alco,	GUT	MG	ACT									TAD		ATT	GTT .	960
1040	Cal											838					883	at	aat	1020
Ξ.	100	-	a.,										eçi.		544			ala -	aat	1052
-	- M		149	mili i	414		ak –	184	80	190		608	48	12	244	and -	ata			1140


Remember this?

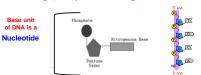
• Chromosome: a long thread of DNA that is tightly coiled

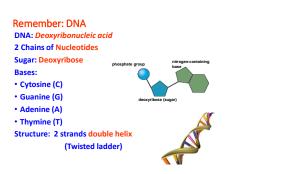
• Gene: specific spot on a chromosome that codes for a single protein

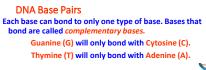
- Each chromosome has *thousands* of genes
- These proteins determine characteristics

What DNA Tells Us

- Organisms that are closely related may have genes that code for the same proteins that make the organisms similar
- For example: sugar maples and red maples have similar
 DNA


Remember:

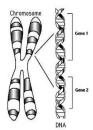

<u>Nucleic acid</u>: allow organisms to transfer genetic information from one generation to the next.

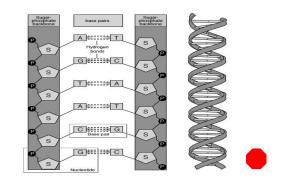

2 types of nucleic acids

DNA and RNA

<u>Nucleotide</u>: base unit of DNA/RNA (3 parts) 3 Parts: Sugar, Phosphate and Nitrogenous Base

ABCDEFG

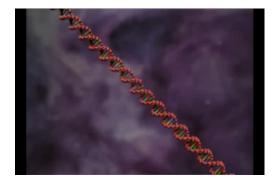



DNA strands are complimentary and run anti-parallel, 1 strand right side up and 1 upside down

DNA Genes-Chromosomes

A <u>gene</u> is segment of a DNA molecule that codes (is the instructions) for a particular trait (characteristic)

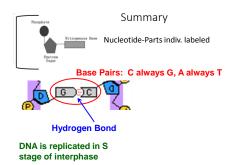
A <u>chromosome</u> is a tightly coiled DNA molecule.



DNA Replication (S stage of Interphase)

Replication:

Is when DNA is "unzipped" copied and 2 identical DNA molecules are created.


It occurs in the nucleus.

DNA Replication

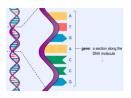
- **1-DNA helicase** enzyme unzips the DNA molecule • Breaks hydrogen bonds
- 2 DNA polymerase enzyme attaches to each strand, makes and attaches new complimentary bases and proof-reads the new identical strands.
- End result: The result is *two identical DNA* molecules, each with one old and one new strand (semiconservative)

Summary DNA & REPLICATION

DNA: Deoxyribonucleic Acid Structure: Components 5 Carbon-Sugar (Deoxyribose)

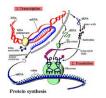
Phosphate Group

Shape **Double Helix** 2 Strands sted Ladder

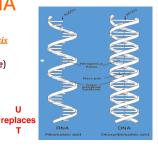

Nitrogenous Base (G.C.A.T) Function: Contains "genetic blueprint" of the organism. Replication (summarize): 2 identical DNA molecules are made using a single DNA molecule as a template Location:

Nucleus (Eukaryotes) Cytoplasm (Prokaryotes)

Genes are sections of the DNA molecule that contain the instructions for making a certain protein.


The general way a protein is created is:

DNA→RNA→Protein


Protein Synthesis

- Proteins are needed to do a lot of things in the cell. When the cell needs a protein, it has to make it through protein synthesis
- Step 1: Transcription
- Step 2: Translation

RNA

- RNA: ribonucleic acid
- Carries out protein synthesis
- Differences from DNA: different sugar (ribose)
 - single strand
 - different base
 - no thymine
 - URACIL instead

3 Types of RNA:

- Messenger RNA: (mRNA) carries nucleotide sequence from nucleus to ribosome
- Transfer RNA: (tRNA) picks up amino acid in cytoplasm and carries them to ribosome then attaches a specific amino acid depending on the 3 base sequence on the mRNA
- Ribosomal RNA: (rRNA)found in ribosome, joins mRNA and tRNA; forms protein

Transcription & Translation

U

т

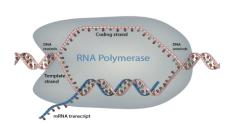
TransCription comes 1st

- Trans Lation comes 2nd
- **C** comes before **L** in the alphabet

Transcription

- DNA is in the nucleus, but the ribosomes are in the cytoplasm
- Transcription helps get the message out

Process of Transcription


- Transcription- process that makes mRNA from DNA
- 1. DNA *unzips* into 2 separate strands A. *DNA Helicase* is the enzyme that breaks H-bond
- 2. Free floating RNA NITROGEN BASES in the nucleus <u>pair up</u>w/unzipped DNA NITROGEN BASES:
 - A. Cytosine(C) pairs with Guanine(G)
 - * (G) with (C)
 - B. Uracil (U) pairs with Adenine(A)
 - * (A) with **(U)****

- 3. After all the pairing is done a *single strand* of RNA has been produced.
- 4. Genetic code from DNA is transferred to mRNA
- 5. The code obtained from *DNA* lets the *mRNA* know which amino acids to pick up.
- ** Each "word" of the code is a set of <u>3 nitrogen</u> bases called a <u>Codon**</u>

Quick Summary

Transcription of DNA Inside the Nucleus

- 1. DNA unzips.
- 2. mRNA bases attach.
- 3. mRNA goes to ribosome.
- 4. DNA zips up again.

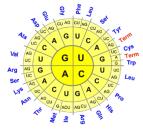
Transcription

Remember...

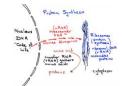
• The complementary RNA to DNA works like this:

DNA exposed	RNA made
Adenine (A)	Uracil (U)
Thymine (T)	Adenine (A)
Cytosine (C)	Guanine (G)
Guanine (G)	Cytosine (C)

• What would the mRNA strand be for the DNA code AGCGCTTACTG?


Translation

- Conversion of RNA into amino acid sequence that makes a protein
- The *mRNA* leaves the nucleus and enters the cytoplasm
- Ribosomes attach to mRNA
- tRNA (carrying anti-codon) picks up the correct amino acids and carries them to the mRNA strand forming the protein
- Ex:
- tRNA carries GAU (anti-codon)& looks for CUA on mRNA


• 3 codons from the mRNA = one amino acid

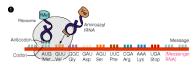
		_			Seconed	Positi	on	_		
			U		с		A			
		code	Amino Acid	code	Amino Acid	code	Amino Acid	code Amino Aci		
1		UUU	phe	UCU		UAU	tvr	UGU	ovs	U
	u	UUC	price	UCC	ser	UAC		UGC	cys	С
/		UUA	leu	UCA		UAA	STOP	UGA	STOP	Α
/		UUG	160	UCG		UAG	STOP	UGG	trp	G
First Position		CUU		ccu	pro	CAU	his	CGU	arg ser arg	U
	с	CUC	leu	CCC		CAC		CGC		С
	C C	CUA	~~	CCA		CAA		CGA		Α
		CUG		CCG		CAG	9.0	CGG		G
		AUU		ACU		AAU	asn hrs	AGU		U
		AUC	ile	ACC		AAC		AGC		С
-	^	AUA		ACA		AAA		AGA		Α
		AUG	met	ACG		AAG	190	AGG	ma	G
		GUU		GCU		GAU	asp	GGU	gly	U
	G	GUC	val	GCC	ala	GAC		GGC		С
	u	GUA		GCA		and	GAA	glu	GGA	84
N		GUG		606		GAG	An	666		G

Translation: Overview

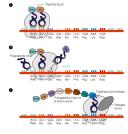
- mRNA leaves the nucleus and enters the cytoplasm
- 2. mRNA goes to a ribosome (where proteins are made)
- Protein made using ribosome, mRNA, and tRNA

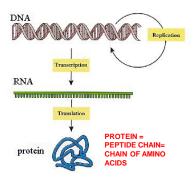
Practice

• DNA= • mRNA=	AGTAACGGATTCGGC UCAUUGCCUAAGCCG
• tRNA=	AGUAACGGAUUCGGC
• DNA =	GTACGTTCCGAATCG
• mRNA=	CAUGCAAGGCUUAGC
• tRNA=	GUACGUUCCGAAUCG


Translation

- tRNA (transfer RNA) is used like an adapter • There are 20 amino acids and 20 tRNA, so each is
 - specific
 The end of each tRNA has an anticodon, which
 - an anticodon, which complements the mRNA codon
 - The other end has the specific amino acid attached


Translation


- 1. tRNA with amino acid pairs to mRNA codon at the ribosome
- 2. A second tRNA pairs with the mRNA codon next to the first one

Translation

- 3. The rRNA in the ribosome makes a peptide bond between the two amino acids
- The empty tRNA leaves the ribosome and goes on to get another amino acid
- Sequence repeats until a stop codon is reached

Comparing Transcription and translation

<u>Transcription</u>– When the mRNA copies the genetic blue print from the DNA—Happens in nucleus

mRNA moves to cytoplasm taking instructions from DNA with it

mRNA attaches to a ribosome (like laying on a table)

<u>Translation</u>-- tRNA with matching anti-codon (3 base sequence) links to mRNA and starts to build and amnino acid chain

After all mRNA has been read a protein (string of amino acid) is the results

Summary RNA

RNA (name): ribonucleic acid Structure of Molecule: (strands) Single strand Nucleotide chain Bases:

Adenine (A) & Uracil (U) , Cytosine (C) & Guanine (G)

Main Function:

Copy and carry DNA instructions to ribosome for protein synthesis

3 Types (summarize) :

<u>Messenger RNA:</u> copies DNA instruction into coboxs <u>Transfer RNA</u>: reads codon, creates protein(anti-Codon) <u>Ribosomal RNA</u>: in ribosome, translation helper

Transcription and translation summary

- 1. <u>Transcription</u>- mRNA is formed, genetic info transferred from DNA and mRNA carries genetic info to ribosomes (rRNA)
- 2. <u>Translation</u>: tRNA reads genetic blueprint on mRNA, attaches amino acids according to instructions to form a protein

What Are Mutations?

- Changes in the nucleotide sequence of DNA
- May occur in <u>somatic</u> <u>cells</u> (aren't passed to offspring)
- May occur in gametes (eggs & sperm) and be passed to offspring

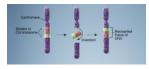
Chromosome Mutations

May Involve:
 Changing the
 structure

loss or gain of chromosomes

Chromosome Mutations

- Five types exist:
 - Deletion
 - Inversion
 - Translocation
 - Nondisjunction
 - Duplication

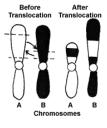

Deletion

Due to breakage A piece of a chromosome is lost

Inversion

- Chromosome segment breaks off
- Segment flips around backwards
- Segment reattaches

Duplication


• Occurs when a gene sequence is repeated

Translocation

- Involves two chromosomes that aren't homologous
- Part of one chromosome is transferred to another chromosomes

Translocation

Nondisjunction

- Failure of chromosomes to separate during meiosis
- Causes gamete to have too many or too few chromosomes

Chromosome Mutation Animation

Original Chromosome

Duplication

Deletion

A B C E F G

Inversion

A D E F G

Inversion

Gene Mutations

- Change in the **nucleotide sequence** of a gene
- May only involve a single nucleotide
- May be due to copying errors, chemicals, viruses, etc.

Types of Gene Mutations

• Include:

- Point Mutations
- Substitutions
- Insertions
- Deletions
- Frameshift

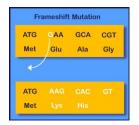
Point Mutation

- Change of a **single** nucleotide
- Includes the deletion, insertion, or substitution of ONE nucleotide in a gene

Point Mutation

• Sickle Cell disease is the result of one nucleotide substitution

• Occurs in the **hemoglobin gene**


Frameshift Mutation

- Inserting or deleting one or more nucleotides
- Changes the "**reading frame**" like changing a sentence
- Proteins built incorrectly

Frameshift Mutation

- Original:
- The fat cat ate the wee rat.
 Frame Shift ("a" added):
 The fat c a tet hew eer at.

Amino Acid Sequence Changed

Gene Mutation Animation

