Lesson 17

Solve Problems Using Systems of Equations

Name:

Prerequisite: Use Substitution to Solve Systems of Equations

Study the example problem showing how to use substitution to solve a system of equations. Then solve problems 1–7.

Example	
Use substitution to solve this system of equations.	
y + 3x = -4 $y = x + 4$	
The second equation tells you that $y = x + 4$, so you can substitute x + 4 for y in the first equation and solve for x.	Now you can find the value of y . You can substitute -2 for x into either equation and solve for y . Try using the second equation.
y + 3x = -4	<i>y</i> = <i>x</i> + 4
(x + 4) + 3x = -4	
4x + 4 = -4 $4x = -8$	y = -2 + 4 y = 2
x = -2	y -
	The solution is $(-2, 2)$.

1 Explain why you substitute x + 4 for y in the first equation of the system in the example.

2 Once you know the value of one variable in a system of equations, how can you find the value of the second variable?

3 Look at the system of equations at the right. Which variable would you find the value of first? Explain your reasoning and solve for that variable.

4y + x = 12x = 2y

Solve.

4 Use substitution to solve the system of equations.

2y - x = -9y = 2x - 3

Show your work.

Solution: _____

Use the system of equations at the right for problems 5–6. y = 2x - 4

- **5** Graph the system of equations. What ordered pair appears to be the solution?
- 6 Solve the system of equations algebraically to check your solution to problem 5.

y = 2x - 4y = -x + 2

Show your work.

Solution: ____

7 Tom's work to solve a system of equations is shown. Do you agree with Tom's statement about the solution? Explain. Describe the graph of the system of equations.

SystemUsing Substitutiony = -2x + 12x + (-2x + 1) = 32x + y = 31 = 3The system has no solution.

Solve Real-World Problems

Study the example problem showing how to use a system of equations to solve a real-world problem. Then solve problems 1–7.

Example

Oceanview Hotel charges \$100 per day plus a one-time fee of \$40. Beachside Hotel charges \$110 per day. After how many days will the costs at the two hotels be equal?

Start by writing a system of equations to model the problem. Let *c* be the cost and *d* be the number of days.

Total cost for Oceanview: c = 100d + 40Total cost for Beachside: c = 110d

Use substitution to solve the system. The second equation tells you that c = 110d, so you can substitute 110d for c.

c = 100d + 40 110d = 100d + 40 Substitute 110d for c. 10d = 40d = 4

The costs at the hotels will be the same after 4 days.

1 Explain what the equation 110d = 100d + 40 represents in the context of the example problem.

2 Suppose Oceanview Hotel changes their fee to \$45 and Beachside Hotel changes their daily rate to \$115. Write new equations for the total costs for the two resorts.

3 Solve the system of equations formed by the equations you wrote in problem 2. After how many days would the total costs at the two resorts be the same?

177

Solve.

4 Roberto got \$30 for his birthday. He decides to save that amount and add \$5 to his savings each week. Jack starts saving the same day as Roberto and puts \$8 in his savings each week. After how many weeks will the boys have the same amount in savings?

Show your work.

Solution: _____

Use this situation for problems 5–6.

Julia earns \$6 an hour babysitting and earns \$5 an hour walking dogs. She earned \$43 after working a total of 8 hours at her two jobs.

5 Complete the system of equations below to represent the situation. Let b = the number of hours that Julia babysits and d = the number of hours she walks dogs.

_____+ ____ = 8 _____+ ____ = 43

- 6 Solve the system of equations from problem 5 to find the number of hours Julia worked at each job.
- Consider the situation at the right. Write a question and a system of equations for the situation. Then answer your question by solving the system of equations.

Trisha and Yoshi are at the start of a trail. Trisha walks 500 feet before Yoshi starts. Trisha walks 350 feet per minute, and Yoshi walks 430 feet per minute.

178

Name:

Solve Problems Using Systems of Equations

Solve the problems.

Solve.

4 Line *a* passes through the points (-3, -2) and (0, 4). Remember that the Line *b* passes through the points (-2, -3) and (0, 1). y-intercept is the Tell whether each statement is True or False. y-coordinate when **a.** Lines *a* and *b* intersect. True False the x-coordinate is 0. **b.** Lines *a* and *b* have True different slopes. False **c.** Lines *a* and *b* have True False different *y*-intercepts. **d.** Lines *a* and *b* are parallel. True False

5 The Parks and Recreation Department in your town offers a season pass for \$150.

- With the season pass you pay \$5 per session to use the town's tennis courts.
- Without the season pass you pay \$15 per session to use the tennis courts.

Part A

Write a system of equations to represent the situation.

Part B

Graph your system of equations. How many times do you need to use the tennis courts for the season pass to save you money? Explain.

Solution: ____

