Properties of Integer Exponents Name: ### Prerequisite: Evaluate Numerical Exponential Expressions Study the example problem showing how to write and evaluate expressions with exponents. Then solve problems 1–9. ### **Example** Jacob decides to save money for a new tablet. He will save \$3 the first week and then triple the amount he has saved each week for 5 weeks. Write and evaluate an exponential expression to find how much money Jacob will have in his savings in Week 5. Represent the problem with repeated multiplication and exponential expressions. | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | |-----------|-------------------|---|--|-------------------------------------| | $3 = 3^1$ | $3 \cdot 3 = 3^2$ | $\mathbf{3\cdot 3\cdot 3}=\mathbf{3^3}$ | $\mathbf{3\cdot 3\cdot 3\cdot 3}=\mathbf{3^4}$ | $3\cdot 3\cdot 3\cdot 3\cdot 3=3^5$ | Week 5 expression: 35 Evaluate the expression: $3^5 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 243$ Jacob will have \$243 in his savings in Week 5. - 1 Look at the table. How many times greater is the amount in Jacob's savings in Week 3 than in Week 2? - 2 How much will Jacob have in his account in Week 3? - Jacob thinks that 3^5 is $5 \cdot 5 \cdot 5$, or 125. Explain what Jacob is doing wrong. - 4 Margo's dad offers to give her 5¢ on Sunday. Then for each day of the week, he offers to give her 5 times the amount from the previous day. How much will he give her on Saturday? Write an expression to show how much Margo's dad gives her on Saturday. ## **Vocabulary** **base** the number being used as a factor in an exponential expression. 5 is the base. \longrightarrow 5³ **exponent** the number that shows how many times a base is used as a factor. $5^3 \leftarrow 3$ is the exponent. Solve. A bacterium cell splits into 2 cells every hour. Write and evaluate an exponential expression to find how many cells there will be in 6 hours. Then use your answer to help you find the number of hours it will take for there to be 1,024 cells. Show your work. | Solution: | | | |-----------|--|--| | | | | - 7 The population of California is about 39 million. Is this greater than or less than 10⁷? Explain. - 8 Write each of the numbers 1, 8, 27, 64, and 125 as a base raised to the third power. $$1 = \square^3$$ $$8 = \square^3$$ $$27 = \square^3$$ $$64 = \prod_{3}$$ $$125 = []^3$$ The exponential expression 2⁸ has a value of 256. Write two other exponential expressions that have a value of 256. Explain how you got your answers. (Begin by writing out 2⁸ as the product of 2s.) ### **Products of Powers** Study the example problems showing how to find the power of a power and the products of powers with the same exponent. Then solve problems 1-10. ### **Example** Same Base and Same Exponent **Different Base and Same Exponent** Simplify: (8²)³ Simplify: (2⁴)(5⁴) One Way: One Way: $(8^2)^3 = 8^2 \cdot 8^2 \cdot 8^2$ $(2^4)(5^4) = (2 \cdot 2 \cdot 2 \cdot 2)(5 \cdot 5 \cdot 5 \cdot 5)$ $= 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8$ $= 8^{6}$ $= (2 \cdot 5)(2 \cdot 5)(2 \cdot 5)(2 \cdot 5)$ $= 10 \cdot 10 \cdot 10 \cdot 10$ $= 10^4$ Another Way: $(8^2)^3 = 8^2 \cdot 8^2 \cdot 8^2$ $= 8^{2\cdot 3}$ Multiply the exponents. $= 8^{6}$ Another Way: $(2^4)(5^4) = (2 \cdot 5)^4$ Multiply the bases. $= 10^4$ - 1 The expression $(8^2)^3$ in the example problem is a product of powers. What are the powers being multiplied? What are the powers being multiplied in the expression $(2^4)(5^4)$? - 2 Simplify: (7⁵)⁶. Write your answer using an exponent. - 3 Simplify: (6³)(9³). Write your answer using an exponent. - 4 Is the statement $(3^5)^4 = (3^4)^5$ true? Explain your reasoning. | Sol | ve. | |-----|---| | 5 | Simplify: (7 ⁵)(4 ⁵). Write your answer using an exponent. | | 6 | Explain in words how to simplify: (153 ²) ⁷ . | | 7 | Is the statement $(10^5)(4^5) = 14^5$ true? Explain your | | | reasoning. | | | | | 8 | What is the value of x in the equation $(5^x)^5 = 5^{35}$? Explain. | | | | | | | | 9 | Without evaluating the expressions, tell which is greater, (4 ⁴)(5 ⁴) or (2 ⁵)(10 ⁵). Explain your reasoning. | | | | | | | | 10 | Nicholas says that (2 ⁶)(2 ⁶) equals 2 ¹² and also equals 4 ⁶ .
Do you agree? Explain your reasoning. | | | | ## **Zero and Negative Exponents** Study the example problems showing how to simplify expressions with zero and negative exponents. Then solve problems 1–12. ### **Example** **Negative Exponent** Simplify: 217⁰ In general, $n^0 = 1$, where $n \neq 0$. In general, $$n^{-a} = \frac{1}{n^{a'}}$$ where $n \neq 0$. So, $217^0 = 1$. So, $$15^{-2} = \frac{1}{15^2}$$. - 1 Simplify: 100⁰_____ - 2 Write (-32)⁻² as an expression without a negative exponent. _____ - 3 Write $\frac{1}{7^6}$ as an expression with a negative exponent. - 4 Compare 8° and 8^{-2} . Which is greater? Explain your reasoning. - 5 Simplify (12°)(12°). Write your answer using an exponent. Explain how you found your answer. - 6 What is the value of x in the equation $(-35)^x = 1$? Explain. - Write an expression using exponents that is equivalent to each of the following expressions. **a**. $$5^{-3} =$$ ______ **b**. $$(-16)^{-2} =$$ **c**. $$\frac{1}{8^4}$$ = _____ | Sol | ve. | |-----|---| | 8 | Simplify the expression 52^{-5} . Then write it as repeated multiplication. | | 9 | Write an exponential expression that is equivalent to $(4^{14})^{-2}$. | | 10 | Is 6^{-2} positive or negative? Explain. | | 11 | Write 9^0 , 9^3 , and 9^{-2} in order from least to greatest. Show your work. | | | | | | Solution: | | 12 | Lizbeth says that $(-12)^{-3}$ equals a positive number because the product of two negative integers is a positive integer. Do you agree? Use what you know about exponential expressions to explain. | | | | | | | | | | | | | | | | # Simplify Expressions with Exponents ### Solve the problems. 1 Look at the equations below. Tell whether each equation is True or False. | | 25 | 3 7 | 335 | |----|----|------------|-----| | a. | 3 | • 3′= | .3 | **b**. $$(6^3 \cdot 3^3)^2 = 18^6$$ **c.** $$7^{-6} \cdot \frac{1}{7^4} = \frac{1}{7^{10}}$$ **d.** $$4^4 \cdot 4^2 = 4^6$$ **e.** $$\frac{13^{-4}}{13^4} = 13^0$$ **f**. $$(2^3 \cdot 8^3)^0 = 16^9$$ True | \neg | | ı | |--------|--|-------| | True | | False | False You may have to apply more than one rule when working with exponents. 2 Tyler simplified the expression $5^4 \cdot 5^{-9}$. All of his work except his answer is shown below. $$5^{4} \cdot 5^{-9} = 5^{4+(-9)}$$ = 5^{-5} = ? Which expression is the correct answer for Tyler's work? - **5**⁵ Remember what you know about negative exponents. Complete the table. | Expression | 10 ⁴ • 10 ⁻² | 5 ⁴ • 7 ⁴ | $(2^7 \cdot 4^7)^3$ | |-----------------------|------------------------------------|---------------------------------|---------------------| | Simplified Expression | | | | #### Solve. 4 Simplify: $\frac{32^{-1}}{32^6}$. Write your answer with a positive exponent. Show your work. Solution: __ 5 Write 9⁶ as a power with a base of 3. What are the factors of 9? - 6 Which expression is equivalent to $(3^4 \cdot 5^4)^{-3}$? - 15^{-48} В Tania chose **B** as the correct answer. How did she get that answer? Remember the order of operations. Simplify the