Transformations and Congruence

Name:

Recognize Translations, Reflections, and Rotations

Study the example showing three different transformations of a figure. Then solve problems 1–5.

5

3 Tell which of the gray figures, *A*, *B*, or *C*, appears to be a translation of the green figure. Explain your reasoning.

4 Quadrilateral WXYZ is a reflection of quadrilateral ABCD.

The lengths of the sides and the measures of the angles of quadrilateral *ABCD* are given below.

AB = 4 cm	BC = 2 cm	CD = 3 cm $DA = 2 cm$		
<i>m∠A</i> = 82°	$m \angle B = 59^{\circ}$	<i>m</i> ∠ <i>C</i> = 129°	<i>m∠D</i> = 90°	
Predict the ler angles in quad	ngths of the sid drilateral <i>WXYZ</i>	es and measure . Explain your re	s of the asoning.	
WX =	XY =	YZ =	ZW =	
<i>m∠W</i> =	_ m∠X =	m∠Y =	m∠Z =	
Troy says that transformatio on the gray fig	the green figui n or combinatio gure. Is Troy cor	re is the result of on of a series of rrect? Explain.	f a single transformations	

Name:

ς

R

4

2

0

C

-ż

D

-4

Determine Whether Two Shapes Are Congruent

Study the example problem showing how to determine whether a shape and its image are congruent. Then solve problems 1–6.

Example

Polygon *ABCD* is translated 2 units down and 6 units to the right. Are polygons *ABCD* and *RSTV* congruent?

Because polygon *RSTV* is the image of polygon *ABCD* after a translation, each of its sides is congruent to the corresponding side of polygon *ABCD*, and each of its angles is

congruent to the corresponding angle of polygon ABCD.

 $\angle A \cong \angle R$ $\angle B \cong \angle S$ $\angle C \cong \angle T$ $\angle D \cong \angle V$

 $\overline{AB} \cong \overline{RS} \qquad \overline{BC} \cong \overline{ST} \qquad \overline{CD} \cong \overline{TV} \qquad \overline{DA} \cong \overline{VR}$

All of the corresponding sides and corresponding angles are congruent, so the polygons are congruent.

- 1 The example shows that $\angle A$ is congruent to $\angle R$. What does it mean to say that angles are congruent?
- 2 Suppose you reflect polygon *ABCD* across the *y*-axis. Would the image be congruent to polygon *ABCD*? Explain.

3 In the example, the length of \overline{BC} in polygon ABCD is 6 units. Without measuring or counting, tell which side in polygon RSTV has a length of 6 units. Explain how you know.

 Triangle PQR is rotated 90° clockwise about the origin. The diagram shows the triangle and its image, △XYZ. Complete the congruence statements.

$\overline{PQ} \cong$	$\overline{QR} \cong$	$\overline{RP} \cong$
∠P ≅	∠Q ≅	∠ <i>R</i> ≅

5 Sketch the image of △FGH after a translation 2 units down and 5 units to the left. Label the vertices of the image K, L, and M. Then complete the congruence statements below.

<i>GH</i> ≅	$___\cong \overline{MK}$
≅∠K	∠H ≅

Polygon B is a reflection of polygon A across the x-axis.
Polygon C is a rotation of polygon B about the origin.
Is polygon C congruent to polygon A? Explain why or why not.

Compare Coordinates

Study the example problem showing how to describe a transformation. Then solve problems 1–7.

Example

 $\triangle ABC$ was transformed to produce a congruent triangle, $\triangle A'B'C'$. What transformation produced $\triangle A'B'C'$?

Compare the corresponding vertices in $\triangle ABC$ and $\triangle A'B'C'$.

riangle ABC (Original)	∆ A′B′C′ (lmage)		
A(-5, 4)	A'(4, 5)		
B(-1, 4)	<i>B</i> ′(4, 1)		
C(-5, 1)	C'(1, 5)		

The *x*-coordinates in the image are the *y*-coordinates in the original figure. The *y*-coordinates in the image are the opposites of the *x*-coordinates in the original figure. The transformation was a 90° clockwise rotation about the origin.

1 Suppose the vertices of the original figure in the example were A(-6, 6), B(-2, 5), and C(-6, 2). What would be the vertices of the image after a 90° clockwise rotation about the origin?

A'(____)

C'(____)

2 On the coordinate plane at the right, sketch △ABC from the example above. Then sketch the triangle with the following vertices.

B'(____)

L(-5, -4) M(-1, -4) N(-5, -1)

Is $\triangle ABC$ congruent to $\triangle LMN$? Explain how you know.

3 Compare the corresponding vertices in problem 2 and identify the transformation that produced $\triangle LMN$ from $\triangle ABC$.

Use polygon *RSTV* and its congruent image polygon R'S'T'V' for problems 4–6.

4 Describe the transformation that maps Polygon RSTV to Polygon R'S'T'V'.

5 Write the coordinates of the vertices of the original polygon and its image. Then compare the corresponding vertices in the original polygon and its image.

R()	S()	T()	V()
R′()	<i>S</i> ′()	Τ'()	V'()

- 6 How is the comparison of the corresponding vertices related to your description of the translation?
- **7** The coordinates of the vertices of $\triangle XYZ$ and its image after a transformation are shown below.

△*XYZ*: *X*(3, 4), *Y*(3, 1), *Z*(1, 1)

△*X*′*Y*′*Z*′: *X*′(−3, 4), *Y*′(−3, 1), *Z*′(−1, 1)

a. Describe the difference in the *x*-values and the *y*-values of the corresponding vertices. What transformation produced $\triangle X'Y'Z'$?

b. Then use this information to find the coordinates of the vertices of $\triangle P'Q'R'$ after the same transformation of $\triangle PQR$.

△*PQR*: *P*(−5, 3), *Q*(−1, 2), *R*(−2, −2)

 $\triangle P'Q'R':P'(___),Y'(___),Z'(___)$

Transformations and Congruence

Solve the problems.

