HCS Curriculum: Science 6 – 12 IB Chemistry, 12th grade Hoover City Schools Secondary Curriculum Science, 2006-07

Course Information:

Course Title:	Chemistry 12, IB
Grade Level:	12
Course Description:	This course continues the study of International Baccalaureate Chemistry. Students will finish the study of inorganic chemistry with an authentic assessment of Transition Metal Chemistry and will study basic Organic Chemistry and Spectroscopy. Students will engage in additional laboratory exercises, complete the Group IV Project, prepare their Experimental Portfolio for internal assessment, and review for the IB Exam.
State COS Correlate:	None
Calendar Type:	Year
Pre-requisite:	IB Chem. 12
Co-requisite:	Calculus
Textbook Title:	Chemistry: The Central Science (AP Edition)
Textbook Publisher:	Prentice Hall
Textbook ISBN:	0-13-193719-7
Textbook Copy Year:	2006, 10 th ed
Accountability Standards:	None
LEA Curriculum Authors:	Jane Mahon
Date of LEA Approval:	Spring 2006

Topical Scope and Sequence: The unit numbers continue where the IB 11 unit numbers ended.

Unit #	1 st Nine Weeks	
10	Buffers and Titrations	
11	Electrochemistry	
12	Advanced Periodicity	
13	Transition Metal Chemistry	

Unit #	2 nd Nine Weeks			
14	Alkanes and Alkenes: Names, properties, reactions, and mechanisms.			
15	Naming of Functional Groups and Isomerism			
16	Reactions of Functional Groups Containing C, H, and O			

Unit #	2 nd Nine Weeks			
14	Alkanes and Alkenes: Names, properties,			
	reactions, and mechanisms.			
17	Reactions of Benzene and its Derivatives			

Unit #	3 rd Nine Weeks			
18	Acid Base properties of Organic Molecules and			
	Other Reactions			
19	Analytical Techniques and Principles of			
	Spectroscopy			
20	Study of Visible, Ultraviolet, Infrared			
	Spectroscopy, Nuclear Magnetic Resonance			
	and Chromatography			
21	Group IV Project			

Unit #	Unit # 4 th Nine Weeks	
22	Portfolio Prep and Review	

Units and Outcome-Based Objectives:

Unit 10- Buffers and Titrations

Essential Questions:

- How are exact concentrations of mixtures of chemical achieved?
- *How are these concepts applied to everyday life?*

Conceptual Connections:

- Control
- Ratio
- Life

Experimental Activities:

#	Unit 10 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Is There a Buffer HERE?	1	Inquiry
2	Make Your Own Buffer (ASIM)	2, 10	Inquiry
3	Determination of K _a by Half-titration (ASIM)	5, 16	Experiment
4	NaOH Standardization with KHP (ASIM)	15	Experiment
5	Titration of a Weak Acid with Standardized NaOH to find the Molar Mass and K _a of the Acid	17	Experiment

	9 .	graue		
#	Unit 10 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Describe a buffer solution in terms of its composition and behavior.	Mastery	NA	NA
2	Describe two ways to make a buffer solution.	Mastery	NA	NA
3	Draw and explain a graph, showing pH against volume of titrant for titrations involving strong acids and bases.	Mastery	NA	NA
4	Draw and explain the general shapes of graphs showing pH against volume of titrant for titrations any kind of monoprotic acid and any base.	Mastery	NA	NA
5	State the equations of the reaction of any weak acid or weak base with water, and hence derive the ionization constant.	Mastery	NA	NA
6	Derive the expression $K_a \times K_b = K_w$ and use it to solve problems for a weak conjugate acid/base pair.	Mastery	NA	NA
7	State and explain the relationship K_a and pK_a and between K_b and pK_b .	Mastery	NA	NA
8	Determine the relative strengths of acid or their conjugate bases from K_a or pK_a values.	Mastery	NA	NA
9	Apply K_a or pK_a in calculations.	Mastery	NA	NA
10	Calculate the pH of a specified buffer system.	Mastery	NA	NA
11	State and explain whether salts form acidic, alkaline or neutral aqueous solutions.	Mastery	NA	NA
12	Describe qualitatively how an acid-base indicator works.	Mastery	NA	NA
13	State and explain how the pH range of an acid-base indicator relates to its pK_a value.	Mastery	NA	NA
14	Determine an appropriate indicator for a titration given the equivalence point of the titration and K_a or pK_a for possible indicators.	Mastery	NA	NA
15	Standardize a solution of NaOH using KHP and pH meters.	Mastery	NA	NA
16	Find the K_a of a weak acid by the half- titration method (using NaOH prepared in #15.)	Mastery	NA	NA
	Find the molar mass and K _a of an	Mastery	NA	NA

#	Unit 10 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	unknown weak acid by titration with the standardized NaOH.			

Unit 11- Electrochemistry

Essential Questions:

• *How is chemical energy (potential energy) transformed into electrical work?*

Conceptual Connections:

- Change
- Power
- Time

Experimental Activities:

#	Unit 11 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Zn/Cu Voltaic Cell	14 -17	Demo
2	Making a Chart of Reduction Potentials	9, 13, 14	Inquiry
3	Puddle Electrolysis	16 - 18	Experiment
4	Electrolysis of Aqueous KI Solution: Determination of Faraday's Constant and Avogadro's Number	19 - 23	Experiment

#	Unit 11 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Define oxidation and reduction in terms of electron loss and gain.	Mastery	NA	NA
2	Introduce the concept of the half- equation (half-reaction.)	Mastery	NA	NA
3	Calculate the oxidation number of an element in a compound.	Mastery	NA	NA
4	State and explain the relationship between oxidation numbers and the names of compounds.	Mastery	NA	NA
5	Identify whether an element is oxidized or reduced in simple redox equations, using oxidation numbers.	Mastery	NA	NA
6	Define the term oxidizing agent (oxidant) and reducing agent (reductant.)	Mastery	NA	NA

#	Unit 11 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
7	Balance redox equations in acid solutions using half-reactions.	Mastery	NA	NA
8	Examine the properties of common oxidants and reductants.	Mastery	NA	NA
9	Deduce a reactivity series based upon the chemical behavior of a group of oxidizing agents and reducing agents.	Mastery	NA	NA
10	Deduce the feasibility of a redox reaction from a given reduction potential series.	Mastery	NA	NA
11	Describe and explain a how a redox reaction is used to produce electricity in a voltaic cell.	Mastery	NA	NA
12	Describe the standard hydrogen electrode.	Mastery	NA	NA
13	Define the term standard electrode potential and explain the measurement of standard electrode potentials to produce an electrochemical series.	Mastery	NA	NA
14	Define the term cell potential and calculate cell potentials using standard electrode potentials.	Mastery	NA	NA
15	Predict whether a reaction will be spontaneous using standard electrode potentials.	Mastery	NA	NA
16	Draw a diagram showing the essential components of an electrolytic cell.	Mastery	NA	NA
17	Describe how current is conducted in an electrolytic cell.	Mastery	NA	NA
18	Deduce the products for the electrolysis of a molten salt.	Mastery	NA	NA
19	Distinguish between the use of a spontaneous redox reaction to produce electricity in a voltaic cell and the use of electricity to carry out a non- spontaneous redox reaction in an electrolytic cell.	Mastery	NA	NA
20	Describe and explain the use of electrolysis in electroplating Cu.	Mastery	NA	NA
21	List and explain the factors affecting the products formed in the electrolysis of aqueous solutions.	Mastery	NA	NA
22	List the factors affecting the amount of	Mastery	NA	NA

#	Unit 11 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	product formed during electrolysis.			
23	Determine the relative amounts of the products formed during the electrolysis of an aqueous solution.	Mastery	NA	NA
24	Know the definition of ampere, the Faraday and the volt, and be able to use these concepts in solving problems about voltaic cells and electrolytic cells	Mastery	NA	NA

Unit 12- Advanced Periodicity

Essential Questions:

• *How does the Periodic Table reflect the structure and properties of matter?*

Conceptual Connections:

- Structure
- Bonding
- Organization

Experimental Activities:

#	Unit 12 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Thermite Reaction	6	Demo
2	Students will design an experiment which demonstrates any of the periodic properties of the elements and compounds we have in the stockroom.	7 - 10	Inquiry

#	Unit 12 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Describe the arrangement of elements in the Periodic Table in order of increasing atomic number.	Mastery	NA	NA
2	Distinguish between the terms group and period.	Mastery	NA	NA
3	Deduce the relationship between the	Mastery	NA	NA

#	Unit 12 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	electron configuration of elements and their position in the Periodic Table.			
4	Describe and explain periodic trends in atomic radii, ionic radii, ionization energy, and electronegativity.	Mastery	NA	NA
5	Describe and explain the trends in melting points of the alkali metals, halogens and period 3 elements based on attraction between nucleus and electrons and based upon electron repulsions	Mastery	NA	NA
6	Discuss the change in nature, from metallic to nonmetallic, of the elements across period 3.	Mastery	NA	NA
7	Describe the similarities in chemical nature of elements in the same group.	Mastery	NA	NA
8	Explain the physical properties of the chlorides and oxides of the elements in the third period in terms of their bonding and structure.	Mastery	NA	NA
9	Describe the chemical trends for the chlorides and oxides in terms of acid- base properties and the reactions of the chlorides and oxides with water.	Mastery	NA	NA
10	Remember that oxides in which the metal has a high oxidation state are covalent and acidic, whereas those in which the metal has a low oxidation state are ionic and basic.	Mastery	NA	NA

Unit 13- Transition Metal Chemistry

Essential Questions:

• Where is the color in the Periodic Table?

Conceptual Connections:

- Structure
- Charges
- Beauty

Experimental Activities:

#	Unit 13 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Demo of a reaction of the complex ions of copper: $Cu(H_2O)_4^{+2} + NH_{3(aq)} \rightarrow Cu(NH_3)_{6(aq)}^{+2}$	12	Demo
2	Adopt a Transition Metal – Student Project with a paper and a presentation/demo (Authentic Assessment)	6-12, 15	Inquiry

#	Unit 13 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	List the characteristics properties of transition (d block) elements.	Mastery	NA	NA
2	Identify which elements are considered to be typical d-block elements.	Mastery	NA	NA
3	Identify which elements are considered to be atypical d-block elements.	Mastery	NA	NA
4	Describe the existence and reason for variable oxidation states in the d-block elements.	Mastery	NA	NA
5	Define the term ligand and give several examples.	Mastery	NA	NA
6	Be able to name complex ions and coordination compounds from their formulas.	Mastery	NA	NA
7	Be able to write the formulas and draw the structural formulas of complex ions and coordination compounds from their names.	Mastery	NA	NA
8	Describe the Valence Bond Model for complex ions and coordination compounds.	Mastery	NA	NA
9	Discuss the limitations of the Valence Bond Theory.	Mastery	NA	NA
10	Describe the Crystal Field Model (Ligand Field Theory) for complex ions and coordination compounds.	Mastery	NA	NA
11	Be able to calculate the crystal field splitting for a specific ion or compound.	Mastery	NA	NA
12	Know that the factors that affect the color of a transition metal complex ion are the identity of the metal and its oxidation number. Be able to explain octahedral complexes in aqueous	Mastery	NA	NA

#	Unit 13 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	solution.			
13	Describe the effect of different ligands on the splitting of the d orbitals in transition metal complexes. Know specifically the differences between NH_3 , H_2O and Cl^{1-} .	Mastery	NA	NA
12	Be able to use the Spec 20 to find the maximum absorbance of a colored complex ion or coordination compound, and from this measurement calculate the amount of energy released to form the color.	Mastery	NA	NA
13	Explain the difference between a homogeneous catalyst and a heterogeneous catalyst and give a specific example of each.	Mastery	NA	NA
14	Outline the catalytic behavior of d-block elements and their compounds: MnO_2 in the decomposition of H_2O_2 , V_2O_5 in the Contact process, Fe in the Haber process, and Ni in the conversion of alkenes to alkanes. Mechanisms are not required.	Mastery	NA	NA
15	Complete an authentic assessment by completing a laboratory project called "Adopt a Transition Metal." Complete details are included in a separate handout.	Mastery	NA	NA

Unit 14- Alkanes and Alkenes: Names, Properties, Reactions, and Mechanisms

Essential Questions:

- Why is life carbon based?
- Why is carbon the only element on the periodic table that can form chains and rings?

Conceptual Connections:

- Change
- Speed
- Symmetry
- Beauty

Experimental Activities:

#	Unit 14 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Model Making	3	Experiment
2	Relative Volatility of Alkanes	2	Inquiry
	NEW Blue Bottle Demo	20	Demo
3	Relative Rates of Nucleophilic Substitution Reactions	20	Experiment
4	Reaction to Produce and Verify the Presence of Alkenes	7	Experiment

#	Unit 14 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Describe the features of a homologous series.	Mastery	NA	NA
2	Predict and explain the trends in boiling points of members of a homologous series.	Mastery	NA	NA
3	Draw and state the name of any alkane or alkene with up to 12 carbon atoms in the structure.	Mastery	NA	NA
4	Explain the relative inertness of alkanes in terms of the inertness of C-H and C-C bonds.	Mastery	NA	NA
5	Describe complete and incomplete combustion of hydrocarbons.	Mastery	NA	NA
6	Know that the combustion of hydrocarbons is exothermic.	Mastery	NA	NA
7	Outline the reaction of symmetrical alkenes with hydrogen, bromine, hydrogen halides and water.	Mastery	NA	NA
8	Describe and explain the electrophilic addition reactions of symmetrical alkenes.	Mastery	NA	NA
9	Write a stepwise mechanistic approach with such reacting species as halogens, mixed halogens, and hydrogen halides.	Mastery	NA	NA
10	Apply Markovnikov's rule to predict the outcome of electrophilic addition reactions of asymmetrical alkenes.	Mastery	NA	NA
11	State that alkanes can react with	Mastery	NA	NA

#	Unit 14 Objectives	Mastery Level	COS	Accountability
#	Unit 14 Objectives	(Int, Rev, Mas)	Alignment	Alignment
	halogens and distinguish between			
	homolytic and heterolytic fission.			
10	Describe and explain the structure of	Mastery	NA	NA
12	benzene using chemical and physical			
	evidence. Explain its special stability.			
	Write the free radical substitution	Mastery	NA	NA
13	reactions and mechanism which occur in			
	the gas phase between alkanes and methylbenzene.			
	· · · · · · · · · · · · · · · · · · ·	Mostowy	NA	NA
14	Describe how the gas phase reactions of chloroalkanes affect the level of ozone	Mastery	INA	INA
14	in the upper atmosphere.			
	Distinguish between primary, secondary,	Mastery	NA	NA
15	and tertiary halogenoalkanes.	widster y	1111	1 12 1
	Describe and explain the $S_N 1$	Mastery	NA	NA
16	mechanism in nucleophilic substitution.	1.100001		
17	Describe and explain the $S_N 2$	Mastery	NA	NA
17	mechanism in nucleophilic substitution.	2		
	Write a stepwise mechanism knowing	Mastery	NA	NA
18	that some examples of nucleophiles are			
	$-CN$, $-OH$, and NH_3 .			
19	Describe and explain the moleculaity for	Mastery	NA	NA
17	the S_N1 and S_N2 mechanisms			
	Describe how the rate of nucleophilic	Mastery	NA	NA
	substitution in halogenoalkanes depends			
20	on both the identity of the halogen and			
	whether the halogenoalkane is primary,			
	secondary or tertiary.			
01	Outline how the relative rate of	Mastery	NA	NA
21	nucleophilic substitution is affected by			
	different nucleophiles.	Mastar	NT A	
าา	Describe and explain inductive and steric effects of substituents on	Mastery	NA	NA
22	substitution reactions.			
23	Outline the polymerization of alkenes.	Mastery	NA	NA
<i>∠</i> 3	Outline the polymenzation of arkelles.	wiaster y	INA	INA

Unit 15-Naming of Functional Groups and Isomerism

Essential Questions:

- Why are there so many organic compounds?
- Conceptual Connections:
 - Change
 - Symmetry

- Asymmetry
- Charges

Experimental Activities:

#	Unit 15 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Model Making	1,4,5,6,7,10,13	Experiment
2	Are there differences in the reactions or reaction rates of enantiomers if all other conditions are held constant?	8,9,10	Inquiry

#	Unit 15 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Draw and state the names of compounds containing up to 10 carbon atoms with one of the following functional groups: aldehyde, ketone, carboxylic acid, alcohol, amide, amine, ester, halogenoalkane, ether, and amino acids.	Mastery	NA	NA
2	Discuss the volatility, solubility in water and acid-base behavior of the functional groups: aldehyde, ketone, carboxylic acid, alcohol, amide, amine, ester, halogenoalkane, ether and amino acids.	Mastery	NA	NA
3	Explain that functional groups can exist as isomers.	Mastery	NA	NA
4	Draw functional group isomers from molecular formulas.	Mastery	NA	NA
5	Draw structural isomers (hydrocarbon chain isomers) for alkanes and alkenes.	Mastery	NA	NA
6	Draw positional isomers for compounds that contain a functional group.	Mastery	NA	NA
7	Draw geometric isomers for alkenes.	Mastery	NA	NA
8	Outline the existence of optical isomers (enantiomers.).	Mastery	NA	NA
9	Locate the chiral carbon in optical isomers	Mastery	NA	NA
10	Draw mirror images of optical isomers.	Mastery	NA	NA
11	Describe and explain geometrical isomerism (cis-, trans-) in non-cyclic alkenes.	Mastery	NA	
12	Explain the difference in physical and chemical properties of geometrical	Mastery	NA	NA

HCS Curriculum: Science 6 – 12	2
IB Chemistry, 12 th grade	

#	Unit 15 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	isomers.			
13	Describe geometrical isomerism in C_3 and C_4 cyclo-alkanes.	Mastery	NA	NA
14	Define plane-polarized light and describe how it interacts with enantiomers (optical isomers.)	Mastery	NA	NA
15	Define the term racemic mixture.	Mastery	NA	NA
16	Compare the physical and chemical properties of enantiomers.	Mastery	NA	NA

Unit 16- Reactions of the Functional Groups Containing C, H, and O

Essential Questions:

- How are increasingly larger molecules prepared?
- How are molecules with different properties made from the most common or available compounds

Conceptual Connections:

- Size
- Versatility
- Beauty

Experimental Activities:

#	Unit 16 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Preparation and Purification of Aspirin	1, 2	Experiment
2	Preparation of Esters	1,2	Inquiry
3	Preparation of Nylon	13	Demo

#	Unit 16 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Outline the condensation reaction of an alcohol with a carboxylic acid to form an ester.	Mastery	NA	NA
2	State the uses of esters.	Mastery	NA	NA
3	Prepare a variety of esters in the lab.	Mastery	NA	NA
4	Describe a natural way in which ethanol can be produced.	Mastery	NA	NA

#	Unit 16 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
5	Describe the production of ethanol for industrial purposes.	Mastery	NA	NA
6	Describe the partial oxidation of an alcohol to an aldehyde.	Mastery	NA	NA
7	Describe the complete oxidation of an alcohol to a carboxylic acid.	Mastery	NA	NA
8	Describe the dehydration reaction of alcohols to form alkenes.	Mastery	NA	NA
9	Show the stepwise mechanism for the elimination of water from alcohols.	Mastery	NA	NA
10	Know the reaction conditions for formation of a symmetrical ether from an alcohol.	Mastery	NA	NA
11	Show the step-wise mechanism for the elimination of HBr from bromoalkanes to form an alkene.	Mastery	NA	NA
12	Know the reaction conditions for formation of an alcohol from a halogenoalkane.	Mastery	NA	NA
13	Deduce the condensation polymers formed by amines reacting with carboxylic acids.	Introduction	NA	NA
14	Outline the formation of peptides and proteins from 2-amino acids.	Introduction	NA	NA

Unit 17- Reactions of Benzene and its Derivatives

Essential Questions:

• Why are these compounds referred to as aromatic?

Conceptual Connections:

- Continuity
- Stability
- Functionality

Experimental Activities:

#	Unit 17 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Vial Organic Chemistry - Dyes	1 - 4	Experiment
2	Making models of the directing power of	7 - 10	Experiment

#	Unit 17 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
	substituents on the benzene ring.		

#	Unit 17 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Describe and explain the structure of benzene using chemical and physical evidence.	Mastery	NA	NA
2	Discuss the stability of the benzene ring in comparison to that of cyclohexane or cyclohexene.	Mastery	NA	NA
3	Discuss the stability of the benzene ring in relationship to the types of reactions it undergoes as compared to compounds like alcohols.	Mastery	NA	NA
4	Give a stepwise mechanism for the nitration of benzene. This mechanism must include the reaction between nitric acid and sulfuric acid.	Mastery	NA	NA
5	Give a stepwise mechanism for the chlorination of benzene. This mechanism must show the formation of Cl^+ and the formation of the catalyst in the last step of the mechanism.	Mastery	NA	NA
6	Give a stepwise mechanism for the alkylation of benzene and methylbenzene in the presence of a halogen carrier.	Mastery	NA	NA
7	Describe and explain the directing effects and relative rates of reaction of different substituents on a benzene ring.	Mastery	NA	NA
8	Know that the substituents that make a molecule more reactive than benzene are $-CH_3$ and $-OH$. These substituents cause increased substitution on the 2^{nd} and 4^{th} carbon of the benzene ring.	Introduction	NA	NA
9	Know that $-Cl$ makes the benzene ring less reactive and causes substitution on the 2^{nd} and 4^{th} carbon of the benzene ring.	Introduction	NA	NA
10	Know that $-NO_2$ and $-CO_2CH_3$ (or other esters) make the benzene ring less	Introduction	NA	NA

#	Unit 17 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	reactive and cause substitution to occur only on the 3 rd carbon of the benzene ring.			
11	Describe and explain the relative rates of hydrolysis of halogenated benzene compounds compared to a halogenoalkane.	Introduction	NA	NA

Unit 18- Acid Base Properties of Organic Molecules and Other Reactions

Essential Questions:

• How are organic acids and bases different from inorganic acids and bases?

Conceptual Connections:

- Concentration
- Variety

Experimental Activities:

#	Unit 18 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Student designed experiment to convert an alcohol to a carboxylic acid.	1 and 2	Inquiry
2	Arrange a group of organic compounds from the most acidic to the least acidic.	3 - 5	Inquiry

#	Unit 18 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Describe and explain the acidic properties of phenol (benzene with an – OH attached) and substituted phenols in terms of bonding (delocalization of charge and polarity of molecules.)	Mastery	NA	NA
2	Describe and explain the acidic properties of substituted carboxylic acids in terms of bonding.	Mastery	NA	NA
3	Place acids in ascending or descending	Mastery	NA	NA

HCS Curriculum: Science 6 – 12
IB Chemistry, 12 th grade

#	Unit 18 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	order of strength based on bonding principles, K _a values, or pK _a values.	(111, 111, 111)		Inginient
4	Describe acid properties in terms of the stability of the conjugate base.	Mastery	NA	NA
5	Compare and explain the relative basicities of ammonia, amines, and amides.	Mastery	NA	NA
6	Use bonding principles such as delocalization of charge to place bases in order from with most basic to least basic or vice versa.	Mastery	NA	NA
7	Use pH, K_b , or p K_b to place bases in order. Keep in mind that when ammonia or an amine reacts with water an acid and OH ¹⁻ are formed. Salts of these weak acids are basic, and the amine can be reformed by reaction with a strong base like NaOH.	Mastery	NA	NA
8	-CH ₃ is an electron donating group so it tends to stabilize the O-H bond in acids; -Cl is an electron withdrawing group so it tends to weaken the O-H bond in acids, thus making them stronger acids. The reverse is true for bases.	Mastery	NA	NA
9	(Nucleophilic Addition Reactions) Describe and explain the mechanism for the addition of HCN to aldehydes and ketones, followed by hydrolysis to give carboxylic acids.	Mastery	NA	NA
10	(Nucleophilic Addition-Elimination Reactions) Describe and explain the reactions of 2, 4-dinitrophenylhydrazine with aldehydes and ketones. (No mechanism is required.)	Mastery	NA	NA
11	Be able to write simple syntheses starting with a given compound and using two or more reagents to prepare a new compound. (See #22 on p. 410, G& D.)	Mastery	NA	NA

Unit 19-Analytical Techniques and Principles of Spectroscopy

Essential Questions:

• What is inside those little black boxes?

Conceptual Connections:

- Mystery
- Light
- Structure

Experimental Activities:

#	Unit 19 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Find the concentration of Fe ²⁺ in an unknown	1,2	Inquiry
2	View an animation of how a double beam spectrometer operates	10	Demo

#	Unit 19 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	State the reason for using analytical techniques: structure determination, analysis of composition, determination of purity.		NA	NA
2	Outline the information that can be obtained from analytical techniques, singly or on combination.Mastery		NA	NA
3	Know that visible and ultraviolet spectroscopy can be use for assaying of metal ions, organic structure determination and detections of drug metabolites.	Mastery	NA	NA
4	Know that infrared (ir) spectroscopy can be used in the determination of organic structures, information on strengths of bonds, in the determination of the secondary structure of proteins, and measuring degree of unsaturation of oils and fats.	Mastery	NA	NA
5	Know that mass spectrometry can be used to determine organic structure, determine isotopic abundance in a naturally occurring element, and isotopic or carbon-14 dating.	Mastery	NA	NA
6	Know that gas chromatography and mass spectrometry are used in drug and food testing and in forensic science.	Mastery	NA	NA
7	Describe the electromagnetic spectrum.	Mastery	NA	NA

#	Unit 19 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	Be able to identify x-ray, uv, visible, ir and radio (including microwave) should be identified. Be able to explain the difference in wavelength, frequency, and energy across the spectrum.			
8	Distinguish between absorption and emission spectra and how each is produced.	Mastery	NA	NA
9	Describe the atomic and molecular processes in which absorption of energy takes place, for example vibrations, rotations and electronic transitions.	Mastery	NA	NA
10	Describe the operating principles of a double-beam infrared spectrometer. Be able to draw a simple double beam spectrometer, even though modern spectrometers process signals by Fourier transformation.	Mastery	NA	NA

Unit 20-Study of Visible, Ultraviolet, Infrared, Nuclear Magnetic Resonance, Mass Spectroscopy and Chromatography

Essential Questions:

• *How do the black boxes yield data?*

Conceptual Connections:

- Mystery
- Light
- Structure

Experimental Activities:

#	Unit 20 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Determination of Structure of Organic Molecules using an IR Spectrophotometer	6 - 9	Inquiry
2	View an animation of how the FTIR produces a spectrum and how one analyses it	6 - 9	Demo

Ŧ	#	Unit 20 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	1	Know that organic molecules containing	Mastery	NA	NA

#	Unit 20 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	a double bond absorb ultraviolet radiation.			
2	Describe the effect of the conjugation of double bonds in organic molecules on the wavelength of absorbed light as in retinol and phenolphthalein.	Mastery	NA	NA
3	Predict whether or not a particular molecule will absorb ultraviolet or visible light.Mastery		NA	NA
4	State the Beer-Lambert Law.	Mastery	NA	NA
5	Construct a calibration curve and use the Beer-Lambert law to determine the concentration of an unknown solution. See Unit 20, Investigation 1.	Mastery	NA	NA
6			NA	NA
7	Know that the polarity of the molecule MUST change in order to absorb infrared radiation.	Mastery	NA	NA
8	State that the relationship between wavenumber and wavelength is inverse. High wavenumber means high energy.	Mastery	NA	NA
9	Deduce the functional groups in an organic molecule from its infrared spectrum. The following functional groups MUST be recognized: alcohol, carboxylic acid, ketone, aldehyde, alkene, and alkyne.	Mastery	NA	NA
10	Know that atoms with an odd mass number can be detected by NMR spectroscopy. Emphasis is on ¹ H.	Mastery	NA	NA
11	Analyze simple NMR spectra including: number of peaks, chemical shift, area under each peak, splitting pattern such as doublet, triplet, and quartet. The environment of a H can change its chemical shift.	Mastery	NA	NA
12	Outline how NMR is used in body scanners. (Water in the body gives 3-d pictures of organs and other structures.)	Mastery	NA	NA
13	Discuss how the molecular mass and molecular formula of a compound may be obtained from the molecular ion	Mastery	NA	NA

HCS Curriculum: Science 6 – 12
IB Chemistry, 12 th grade

#	Unit 20 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
	peak.			
14	Analyze molecular mass spectra. Isotopes can be identified, too. For example ¹³ C is $(M+1)^+$; chlorine is $(M+2)^+$; bromine is $(M+4)^+$. Other peaks which help interpret the mass spectrum are $(M_r - 15)^+$ loss of CH ₃ ; $(M_r - 29)^+$ loss of C ₂ H ₅ or CHO; $(M_r - 31)^+$ loss of CH ₃ O; $(M_r - 45)^+$ loss of COOH.	Mastery	NA	NA
15	State the reasons for using chromatography.	Mastery	NA	NA
16	State that all chromatographic techniques require a stationary phase and a mobile phase.	Mastery	NA	NA
17	Explain how the phenomena of adsorption and partition can be used in chromatographic techniques.	Mastery	NA	NA
18	Outline the use of paper chromatography, thin-layer chromatography (TLC), gas-liquid chromatography (GLC) and high performance liquid chromatography (HPLC).	Mastery	NA	NA
19	Deduce which chromatographic technique is most appropriate in a particular mixture.	Mastery	NA	NA

Unit 21- End of Year Essentials

Essential Questions:

• Do we have to do all of this to receive an IB diploma?

Conceptual Connections:

- Hard work
- Time
- Conclusion

Experimental Activities:

#	Unit 21 Investigations	Unit Obj Correlation	Type (Dem, Exp, Inq)
1	Group IV Project	IB Syllabus	Inquiry

Outcome-Based Objectives:

#	Unit 21 Objectives	Mastery Level (Int, Rev, Mas)	COS Alignment	Accountability Alignment
1	Perform and write a complete Lab	Mastery	NA	NA
1	¹ Report for the Group IV Project.	Widstery		
2	Prepare Laboratory Portfolios for	Mostory	NA	NA
Z	Internal Assessment.	Mastery		
3	Review for the IB Exam	Mastery	NA	NA

Alabama Course of Study Correlation: Science

COS	OS Title Not applicable Bulletin		2005, No. 20	
#		COS Objectives		HCS Unit- Objective
	of cou	Note: This locally developed elective course is part of a continuum of courses offered within the International Baccalaureate Programme.		

EXPLORE / PLAN / ACT Standards for Transition Correlation: Science

Score Range	EPAS Standard	HCS Unit- Objective
	Identify or use a complex mathematical relationship that exists between data	20.4
	Extrapolate from data points in a table or graph	13.13,21.5
	Compare or combine given text with data from tables, graphs, or diagrams	20.1, 20.2, 20.9
	Understand complex lab procedures	Inv13.2, Inv 12.4
	Determine the hypothesis for an experiment	19.1
28 - 32	Understand moderately complex experimental designs	Inv13.2, Inv 12.4
	Identify an alternate method for testing a hypothesis	Inv 20.1
	Select a complex hypothesis, prediction, or conclusion that is supported by a data set or viewpoint	Group IV Project
	Select a set of data or a viewpoint that supports or contradicts a hypothesis, prediction, or conclusion	Group IV Project
	Predict the most likely or least likely result based on	Group IV

Score Range	EPAS Standard	HCS Unit- Objective
	a given viewpoint	Project
33 - 36	Compare or combine data from two complex data sets	Inv 13.2
	Combine new, complex information (data or text) with given information (data or text)	Inv 13.2
	Understand precision and accuracy issues	Inv 13.2 Group IV Project
	Predict how modifying an experiment or study (adding a new trial or changing a variable) will affect results	Post-lab discussions of Inv 13.2, 12.4, 20.1
	Identify new information that could be collected from a new experiment or by modifying an existing experiment	Post-lab discussions of Inv 13.2, 12.4, 20.1
	Select a complex hypothesis, prediction, or conclusion that is supported by two or more data sets or viewpoints	Post- lab discussions of Inv 12.4, 13.2, 20.1
	Determine why given information (data or text) supports or contradicts a hypothesis or conclusion	Group IV Project