Anatomy and Physiology II

June 2016
New Milford Board of Education
 David Lawson, Chairperson
 Bill Dahl, Vice Chairperson
 Wendy Faulenbach, Secretary
 Tammy McInerney, Assistant Secretary
 Angelia Chastain
 Robert Coppola
 David Littlefield
 Brian McCauley
 J.T. Schemm

Superintendent of Schools
 Mr. Joshua Smith

Acting Assistant Superintendent
 Dr. Genie Slone

Author of Course Guide
 Karen Terhaar
 Robin Barboza
New Milford Public Schools
Honors Anatomy & Physiology II Curriculum

Committee Member(s):
Karen Terhaar
Robin Barboza-Josephson

Course/Subject:
Honors Anatomy & Physiology II

Grade Level: 11 - 12
of Weeks: 5

Identify Desired Results
Common Core Standards

● HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]

● HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

● CCSS.ELA-LITERACY.RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

● CCSS.ELA-LITERACY.WHST.11-12.9 Draw evidence from informational texts to support analysis, reflection, and research.

Enduring Understandings
Generalizations of desired understanding via essential questions
(Students will understand that …)

Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback

Essential Questions
Inquiry used to explore generalizations

● How do the structures of organisms enable life’s function?

● How do organisms detect, process, and use information about the environment?

● What are the physiological mechanisms that allow organ
Mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)

Expected Performances

What students should know and be able to do

Students will know the following:
- How interactions among hormones, senses, and nerves make possible the coordination of functions of the body
- The physiology of electrochemical impulses and neural integration and be able to trace the pathway of an impulse and relate biochemical changes involved in the conduction of the impulse
- How the body perceives internal and external stimuli and responds to maintain a stable internal environment, as it related to biofeedback

Students will be able to do the following:
- Analyze how the nervous system is organized at the cellular level to coordinate and integrate the functions of the other body systems.
- Analyze how the nervous system receives internal and external cues, processes incoming information, and decides what action to take.
- Connect how your somatic and special senses function to process and act on sensory information.
- Analyze how the functions of the nervous system and the endocrine system differ and how do they complement one another.

Character Attributes

- Citizenship
- Respect
- Responsibility
- Compassion

Technology Competencies

- Students use technology to research, communicate, collaborate and solve an authentic problem.

Develop Teaching and Learning Plan

Teaching Strategies:
- Use gradual release model
- PowerPoint presentations and notes
- Laboratory investigations

Learning Activities:
- Neuron Model Analysis
- POGIL activities (using models)
- Examining Reflexes
- Mapping Taste Receptors
Assessments

<table>
<thead>
<tr>
<th>Performance Task(s)</th>
<th>Other Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentic application to evaluate student achievement of desired results designed according to GRASPS (one per marking period)</td>
<td>Application that is functional in a classroom context to evaluate student achievement of desired results</td>
</tr>
</tbody>
</table>

Goal: To construct a brain cap with all regions and functions of the brain researched and labeled
Role: Brains
Audience: Students
Situation: A room full of naked brains
Product or Performance: An illustrated paper skull cap with all the regions and functions of the brain labeled
Standards for Success: Complete and accurate based on rubric

- Formative quizzes
- Summative unit assessments
- Lab Reports
- Case Study notes
- Poster and Presentation of case study results

Suggested Resources

Identify Desired Results

<table>
<thead>
<tr>
<th>Committee Member(s):</th>
<th>Course/Subject:</th>
</tr>
</thead>
</table>
| Karen Terhaar
Robin Barboza-Josephson | Honors Anatomy & Physiology II |

<table>
<thead>
<tr>
<th>Unit Title:</th>
<th>Grade Level:</th>
<th># of Weeks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 2 - Transport</td>
<td>11 - 12</td>
<td>5</td>
</tr>
</tbody>
</table>

Common Core Standards

BOE Approved 04/18/2017
- HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]
- HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]
- CCSS.ELA-LITERACY.RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
- CCSS.ELA-LITERACY.WHST.11-12.9 Draw evidence from informational texts to support analysis, reflection, and research.

<table>
<thead>
<tr>
<th>Enduring Understandings</th>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalizations of desired understanding via essential questions (Students will understand that …)</td>
<td>Inquiry used to explore generalizations</td>
</tr>
</tbody>
</table>
| - Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3) | - How do the structures of organisms enable life’s function?
- How do organisms obtain and use the matter and energy they need to live and grow?
- What are the physiological mechanisms that allow organ systems to function? |

<table>
<thead>
<tr>
<th>Expected Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>What students should know and be able to do</td>
</tr>
</tbody>
</table>

Students will know the following:
- The relationships between the cardiovascular and respiratory systems as they obtain oxygen needed for the oxidation of nutrients and the removal of carbon dioxide
- The relationship between the lymphatic and cardiovascular systems in circulation and immune functions
Students will be able to do the following:
- Analyze how the cardiovascular system powers and transport oxygen, nutrients and waste to and from the cells.
- Analyze how blood functions in oxygen transportation and infection control.
- Apply concepts to explain how the lymphatic system function for transportation and immunity.

<table>
<thead>
<tr>
<th>Character Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citizenship</td>
</tr>
<tr>
<td>Respect</td>
</tr>
<tr>
<td>Responsibility</td>
</tr>
<tr>
<td>Compassion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students use technology to research, communicate, collaborate and solve an authentic problem.</td>
</tr>
</tbody>
</table>

Develop Teaching and Learning Plan

Teaching Strategies:
- Use gradual release model
- PowerPoint presentations and notes
- Laboratory investigations
- Case Study Investigations
- Cooperative grouping
- Audio Visual presentations
- Research
- Nonlinguistic representations

Learning Activities:
- Pulse Rate and Blood Pressure Lab
- Structure of the Heart Labeling Lab
- POGIL activities (using models)
- Case Study Analysis
- Cat Dissection

Assessments

Performance Task(s)
Authentic application to evaluate student achievement of desired results designed according to GRASPS (one per marking period)

Other Evidence
Application that is functional in a classroom context to evaluate student achievement of desired results

- Formative quizzes
- Summative unit assessments
- Lab Reports
- Case Study notes
- Poster and Presentation of case study results

Goal: to solve a case study investigation
Role: volunteer at a first aid station
Audience: the EMT who appears at the scene and is questioning you
Situation: Road Race Fundraiser - 25 year old runner - tightness in chest - pain - dizzy - faint - short of breath at
the 1-K mark - first race - no history of heart attacks or high blood pressure - low levels of cholesterol and fat in blood - well hydrated - good breakfast in am

Product or Performance: poster and presentation with the possible cardiovascular system problems causing the illness

Standards for Success: Presentation of data and fact based listing of possible problems based on student understanding of the cardiovascular system

<table>
<thead>
<tr>
<th>Suggested Resources</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Committee Member(s):</th>
<th>Course/Subject:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Terhaar</td>
<td>Honors Anatomy & Physiology II</td>
</tr>
<tr>
<td>Robin Barboza-Josephson</td>
<td>Grade Level: 11 - 12</td>
</tr>
<tr>
<td></td>
<td># of Weeks: 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit Title: Unit 3 - Absorption & Excretion</th>
<th>Identify Desired Results</th>
</tr>
</thead>
</table>

BOE Approved 04/18/2017
Common Core Standards

- **HS-LS1-2.** Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]

- **HS-LS1-3.** Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

- **HS-LS1-6.** Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. [Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.] [Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.]

- **HS-LS1-7.** Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. [Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.]

- **CCSS.ELA-LITERACY.RST.11-12.4** Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to *grades 11-12 texts and topics.*

- **CCSS.ELA-LITERACY.WHST.11-12.9** Draw evidence from informational texts to support analysis, reflection, and research.

Enduring Understandings

<table>
<thead>
<tr>
<th>Generalizations of desired understanding via essential questions (Students will understand that . . .)</th>
<th>Inquiry used to explore generalizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage</td>
<td>How do the structures of organisms enable life’s function?</td>
</tr>
<tr>
<td></td>
<td>How do organisms obtain and use the matter and energy they need to live and grow?</td>
</tr>
<tr>
<td></td>
<td>What are the physiological mechanisms that allow organ systems to function?</td>
</tr>
</tbody>
</table>
(through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)

- As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy transfer to the surrounding environment. (HS-LS1-7)

Expected Performances

What students should know and be able to do

Students will know the following:
- The chemical and physical mechanisms of digestion, elimination, transportation and absorption within the body to change food and derive energy
- The relationship between the respiratory and cardiovascular systems as they obtain oxygen needed for the oxidation of nutrients and removal of carbon dioxide
- The role of the urinary system to regulate body wastes
- Conditions that change normal body functions and how the body responds

Students will be able to do the following:
- Apply concepts to how the body makes the nutrients in food available for utilization by the cells.
- Analyze how the respiratory system extracts oxygen from the atmosphere and gives off waste gases from the body so that the body can adjust to different levels of activity.
- Analyze how the kidneys help maintain the internal environment under varied conditions.

Character Attributes

- Citizenship
- Respect
- Responsibility
- Compassion
Technology Competencies

- Students use technology to research, communicate, collaborate and solve an authentic problem.

Develop Teaching and Learning Plan

Teaching Strategies:
- Use gradual release model
- PowerPoint presentations and notes
- Laboratory investigations
- Case Study Investigations
- Cooperative grouping
- Audio Visual presentations
- Research
- Nonlinguistic representations

Learning Activities:
- Identify the organs of digestive and respiratory systems.
- Measuring Respiratory Volumes
- POGIL activities (using models)
- Case Study Analysis
- Cat Dissection

Assessments

<table>
<thead>
<tr>
<th>Performance Task(s)</th>
<th>Other Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentic application to evaluate student achievement of desired results designed</td>
<td>Application that is functional in a classroom context to evaluate student</td>
</tr>
<tr>
<td>according to GRASPS (one per marking period)</td>
<td>achievement of desired results</td>
</tr>
<tr>
<td>Goal: Create a digestion apron that illustrates the digestive process from mouth</td>
<td>• Formative quizzes</td>
</tr>
<tr>
<td>to anus</td>
<td>• Summative unit assessments</td>
</tr>
<tr>
<td>Role: Wear the apron</td>
<td>• Lab Reports</td>
</tr>
<tr>
<td>Audience: Students</td>
<td>• Case Study notes</td>
</tr>
<tr>
<td>Situation: Follow food and label the digestive process from beginning to end</td>
<td>• Poster and Presentation of case study results</td>
</tr>
<tr>
<td>Product or Performance: the hand drawn apron</td>
<td></td>
</tr>
<tr>
<td>Standards for Success: complete and accurate</td>
<td></td>
</tr>
</tbody>
</table>

Suggested Resources

Identify Desired Results

<table>
<thead>
<tr>
<th>Common Core Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>● HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]</td>
</tr>
<tr>
<td>● CCSS.ELA-LITERACY.RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.</td>
</tr>
<tr>
<td>● CCSS.ELA-LITERACY.WHST.11-12.9 Draw evidence from informational texts to support analysis, reflection, and research.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enduring Understandings</th>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalizations of desired understanding via essential questions (Students will understand that …)</td>
<td>Inquiry used to explore generalizations</td>
</tr>
<tr>
<td>● In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. (HS-LS3-2)</td>
<td>● How do the structures of organisms enable life’s function?</td>
</tr>
<tr>
<td>● Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)</td>
<td>● How do organisms grow and develop?</td>
</tr>
<tr>
<td></td>
<td>● What are the physiological mechanisms that allow organ systems to function?</td>
</tr>
</tbody>
</table>
Expected Performances

What students should know and be able to do

Students will know the following:
- The how the functions of the reproductive organs are regulated by hormonal interactions
- The stages of human embryology and gestation

Students will be able to do the following:
- Critique how the male and female reproductive systems differ and complement each other.

Character Attributes

- Citizenship
- Respect
- Responsibility
- Compassion

Technology Competencies

- Students use technology to research, communicate, collaborate and solve an authentic problem.

Develop Teaching and Learning Plan

Teaching Strategies:
- Use gradual release model
- PowerPoint presentations and notes
- Laboratory investigations
- Case Study Investigations
- Cooperative grouping
- Audio Visual presentations
- Research
- Nonlinguistic representations

Learning Activities:
- POGIL activity (using models)
- Case study analysis
- Labeling Diagrams
- Cat dissection

Assessments

<table>
<thead>
<tr>
<th>Performance Task(s)</th>
<th>Other Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentic application to evaluate student achievement of desired results designed according to GRASPS (one per marking period)</td>
<td>Application that is functional in a classroom context to evaluate student achievement of desired results</td>
</tr>
</tbody>
</table>

Goal: Create a visual display representing the major stages and

- Formative quizzes
- Summative unit assessments
- Lab Reports
- Case Study notes
- Poster and Presentation of case
<table>
<thead>
<tr>
<th>events of the human reproductive life cycle</th>
<th>study results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role: Story told from perspective of sperm cell, hormone, or baby, etc.</td>
<td></td>
</tr>
<tr>
<td>Audience: Students</td>
<td></td>
</tr>
<tr>
<td>Situation: Presentation of the following stages/events - fertilization, mitosis/differentiation, development, puberty, meiosis</td>
<td></td>
</tr>
<tr>
<td>Product or Performance: Storyboard</td>
<td></td>
</tr>
<tr>
<td>Standards for Success: Rubric based on explanation of stages, use of vocabulary, sequence and flow of stages, appearance, creativity, effort</td>
<td></td>
</tr>
</tbody>
</table>

Suggested Resources