> wzv -bjbj 7rr3$
88888LLL8L$(<<<pppt$v$v$v$v$v$v$$&E)N$8ppppp$88<<4$!!!p8<8<t$!pt$!!!(!<
h!`$$0$"!)z)(!)8(!8pp!ppppp$$!ppp$pppp)ppppppppp
: 3. Expressions can be represented in multiple, equivalent expressions. a. Intrepret the structure of expressions. (CCSS:A-SSE)
i. Intrepret expressions that represent a quantity in terms of its context.*(CCSS: A-SSE.1)
We will translate between words and algebra and evaluate algebraic expressions. CompLesson 1-1: Variables and Expressions
Variable
Constant
Numerical expression
Algebraic expression
Evaluate4. Solutions to equations, inequalities, and systems of equations are found using a variety of tools. b. Understand solving equations as a process of reasoning and explain the reasoning. (CCSS: A-REI)
i. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. (CCSS: A-REI.1) We will solve one-step equations in one variable by using addition and subtraction. ApplLesson 1-2: Sovling Equations by Adding or Subtracting
Equation
Solution of an equation4. Solutions to equations, inequalities, and systems of equations are found using a variety of tools.b. Understand solving equations as a process of reasoning and explain the reasoning. (CCSS: A-REI)
i. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. (CCSS: A-REI.1)
c. Solve equations and inequalities in one variable. (CCSS: A-REI)
i. Sovle linear equations and inequalities in one variable, including equations with coefficients represented by letters. (CCSS: A-REI.3)We will solve one-step equations in one variable by using multiplication or division. Appl
SynthLesson 1-3: Solving Equations by Multiplying or Dividing Equation
Solution of an equation4. Solutions to equations, inequalities and systems of equations are found using a variety of toolsb. Understand solving equations as a process of reasoning and explain the reasoning. (CCSS: A-REI)
i. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. (CCSS: A-REI.1)
We will solve equations in one variable that contain more than one operation. Appl
SynthLesson 1-4: Solving Two-Step and Multi-Step Equations
4. Solutions to equations, inequalities and systems of equations are found using a variety of toolsb. Understand solving equations as a process of reasoning and explain the reasoning. (CCSS: A-REI)
i. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. (CCSS: A-REI.1)
We will solve equations in one variable that contain variable terms on both sides.
Appl
Synth
Lesson 1-5: Sovling Equations with Variables on Both Sides
identity4. Solutions to equations, inequalities and systems of equations are found using a variety of tools
a. Create equations that describe numbers or relationships. (CCSS: A-CED)
iv. Rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations. (CCSS: A-CED.4)
We will solve a formula for a given variable and sovle an equation in two or more variables for one of the variables.
ApplLesson 1-6: Solving for a Variables
Formula
Literal equation4. Solutions to equations, inequalities and systems of equations are found using a variety of tools
a. Create equations that describe numbers or relationships. (CCSS: A-CED)
i. Create equations an inequaltities in one variable and use them to solve problems. (CCSS: A-CED.1)We will sovle equations in one variable that contain absolute-value expressions. ApplLesson 1-7: Solving Absolute-Value EquationsAbsolute-Value2. Quantitative reasoning is used to make sense of quantities and their relationships in problem solving.a.Reason quantitatively and use units to solve problems. (CCSS: N-Q)
i. Use units as a way to understand problems and to guide the solution of multi-step problems. (CCSS: N-Q.1)
1. Choose and interpret units consistently in formulas. (CCSS: N-Q.1)
2. Choose and interpret the scale and the origin in graphs and data displays. (CCSS: N-Q.1)
We will write and use ratios, rates and units. We will also write and solve proportions. Appl
SynthLesson 1-8: Rates, Ratios, and Proportions Ratio
Rate
Scale
Unit Rate
Coversion Factor
Proportion
Cross Product
Scale Drawing
Scale Model
Dimensional Analysis2. Quantitative reasoning is used to make sense of quantities and their relationships in problem solving.a.Reason quantitatively and use units to solve problems. (CCSS: N-Q)
i. Use units as a way to understand problems and to guide the solution of multi-step problems. (CCSS: N-Q.1)
1. Choose and interpret units consistently in formulas. (CCSS: N-Q.1)
2. Choose and interpret the scale and the origin in graphs and data displays. (CCSS: N-Q.1)We will use proportions to solve problems involving geometric figures and use proportions and similar figures to measure objects indirectly. Appl
EvalLesson 1-9: Applications of ProportionsSimilar
Corresponding Sides
Corresponding Angles
Indirect Measurement
Scale Factor2. Quantitative reasoning is used to make sense of quantities and their relationships in problem solving.a.Reason quantitatively and use units to solve problems. (CCSS: N-Q)
ii. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (CCSS: N-Q.3)We will analyze and compare measurements for precision and accuracy and choose an appropriate level of accuracy when reporting measurements. Analy
KnowLesson 1-10: Precision and Accuracy Precision
Accuracy
Tolerance4. Solutions to equations, inequalities and systems of equations are found using a variety of toolsc. Solve equations and inequalities in one variable. (CCSS: A-REI)
i. Sovle linear equations and inequalities in one variable, including equations with coefficients represented by letters. (CCSS: A-REI.3)We will identify solutions of inequalities in one variable and write and graph inequalities in one variable.
We will solve one-step inequalities by using addition and subtraction.
We will solve one-step inequalities by using multiplication and dividing.
We will solve inequalities that contain more than one operation.
We will sovle inequalities that contain variable terms on both sides.
We will solve and graph solution sets of compound inequalities in one variable.
We will solve inequalities in one variable involving absolute-value expressions.Know
Appl
SynthLesson 2-1: Graphing and Writing Inequalitiies
Lesson 2-2: Solving Inequalities by Adding or Subtracting
Lesson 2-3: Solving Inequalities by Multiplying or Dividing
Lesson 2-4: Solving Two-Step and Multi-Step Inequalities
Lesson 2-5: Solvine Inequalities with Variables on Both Sides
Lessson 2-6: Solving Compound Inequalities
Leson 2-7: Solving Absolute-Value Inequalities
Inequality
Solution of an Inequaltity
1.Functions model situations where one quantity determines another and can be represented algebraically, graphically, and using tables.
2. Quantitative reasoning is used to make sense of quantities and their relationships in problem situationsb. Interpret functions that arise in applications in terms of the context. (CCSS:F-IF)
i. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (CCSS: F-IF.4)
a.Reason quantitatively and use units to solve problems. (CCSS: N-Q)
ii. Define appropriate quantities for the purpose of descriptive modeling (CCSS:N-Q.2)We will match simple graphs with situations and graph relationships. Comp
SynthLesson 3-1: Graphing Relationships Continuous Graph
Discrete Graph1.Functions model situations where one quantity determines another and can be represented algebraically, graphically, and using tables.a.Formulate the concept of a function notation. (CCSS:F-IF)
i.Explain that a function is a correspondence from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range. (CCSS:F-IF.1)We will identify functions and determine the domain and range of relations and functions. Know
ApplLesson 3-2: Relations and FunctionsRelation
Domain
Range
Function1.Functions model situations where one quantity determines another and can be represented algebraically, graphically, and using tables.a.Formulate the concept of a function notation. (CCSS:F-IF)
ii. Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of a context. (CCSS: F-IF.2) We will indentify independent and dependent variables and write an equation in function notation and evaluate a function for given input values. Know
Eval
SynthLesson 3-3: Writing FuncitonsIndependent Variable
Dependent Variable
Function Rule
Function Notation
ROCKY FORD CURRICULUM GUIDE
SUBJECT: Algebra I GRADE: High School TIMELINE: 1st Quarter
Grade Level ExpectationEvidence OutcomeStudent-Friendly
Learning ObjectiveLevel of
ThinkingResource Correlation
Academic Vocabulary
Learning Keys, 800.927.0478, HYPERLINK "http://www.learningkeys.org" www.learningkeys.org Page PAGE \* MERGEFORMAT 1
GHJ0 1 5 6 \ d e n o y whVD6hYCJOJQJ^JaJ#h]hShb5CJOJQJ^JaJ#hGhG5CJOJQJ^JaJh&5CJOJQJ^JaJ#hYJhb5CJOJQJ^JaJh)xI5CJOJQJ^JaJhGCJOJQJ^JaJhbOJQJ\^JaJh&OJQJ\^JaJhbhbOJQJ\^JaJ h]hShbCJOJQJ^JaJ hbhbCJOJQJ^JaJh&CJOJQJ^JaJH1 6 ] ^ _ ` a b c d e o y d$IfgdGd$IfgdCZd$Ifgdb$If^`gdb$If^`gd&d$IfgdNGy
v
w
JKvgUF4#h]hSh]hS5CJOJQJ^JaJh"5CJOJQJ^JaJ#hYJh]hS5CJOJQJ^JaJh)xI5CJOJQJ^JaJ hth]hSCJOJQJ^JaJh]hSh]hSOJQJ\^JaJh]hSOJQJ\^JaJh"OJQJ\^JaJ h]hSh]hSCJOJQJ^JaJ hthbCJOJQJ^JaJ hth&CJOJQJ^JaJh&CJOJQJ^JaJh"CJOJQJ^JaJy 'kd$$Iflֈ
5!%08R
t0644
layt]hSd$IfgdCZ
w
K
$If^gd"d$IfgdCZ
op
Ͻo^L?-?-#h"h"CJOJQJ\^JaJh"OJQJ\^JaJ#hthOBCJOJQJ\^JaJ hth]hSCJOJQJ^JaJ hth"CJOJQJ^JaJh]hSCJOJQJ^JaJh"CJOJQJ^JaJ#h]hShOB5CJOJQJ^JaJhOB5CJOJQJ^JaJ#h]hSh]hS5CJOJQJ^JaJ#h]hSh"5CJOJQJ^JaJh"5CJOJQJ^JaJh]hS5CJOJQJ^JaJ
p5'd$IfgdCZkd$$Iflֈ
5!%08R
t0644
layt]hSp
s1d$IfgdCZ $Ifgd"
$If^gd"
rst012ufTC1#h{hOB5CJOJQJ^JaJ hthjoCJOJQJ^JaJ#hjohOB5CJOJQJ^JaJhjo5CJOJQJ^JaJ#hYJh)xI5CJOJQJ^JaJhOB5CJOJQJ^JaJh)xI5CJOJQJ^JaJhOBCJOJQJ^JaJhjoCJOJQJ^JaJhNGCJOJQJ^JaJ#hth"CJOJQJ\^JaJh"CJOJQJ\^JaJhOBCJOJQJ\^JaJ125'd$IfgdCZkd$$Iflֈ
5!%08R
t0644
layt{2 !&']^`οp^O=, hsAhsACJOJQJ^JaJ#hjohsA5CJOJQJ^JaJhjo5CJOJQJ^JaJ#hh)xI5CJOJQJ^JaJhsA5CJOJQJ^JaJh)xI5CJOJQJ^JaJ hrhsACJOJQJ^JaJhjoCJOJQJ^JaJ#hsAhjoCJOJQJ\^JaJhjoCJOJQJ\^JaJ#h"hjoCJOJQJ\^JaJhjoOJQJ\^JaJ#hrhsACJOJQJ\^JaJ!'^_`ad$IfgdCZd$IfgdsA $Ifgd$z $Ifgdjo
$If^gdjo
ab5'd$IfgdCZkd\$$Iflֈ
5!%08R
t0644
laytsA`b)QRSWX]^aооo`Q`?o0hjo5CJOJQJ^JaJ#hh)xI5CJOJQJ^JaJhsA5CJOJQJ^JaJh)xI5CJOJQJ^JaJ#hhsA5CJOJQJ^JaJhjoCJOJQJ^JaJhsACJOJQJ^JaJ#hjohsACJOJQJ\^JaJhjoCJOJQJ\^JaJ#h"hjoCJOJQJ\^JaJhjoOJQJ\^JaJ#hrhsACJOJQJ\^JaJ hrhsACJOJQJ^JaJ)RSX^_`ad$IfgdCZ $Ifgdjo
$If^gdjo`aWXν{nanQC5Ch'CJOJQJ^JaJhsACJOJQJ^JaJhsAh'OJQJ\^JaJhsAOJQJ\^JaJh'OJQJ\^JaJ#h{h'CJOJQJ\^JaJh'CJOJQJ\^JaJhsACJOJQJ\^JaJ#hrh{xRCJOJQJ\^JaJ hrhsACJOJQJ^JaJhjoCJOJQJ^JaJ hsAhsACJOJQJ^JaJ#hjohjo5CJOJQJ^JaJ5'''d$IfgdCZkd*$$Iflֈ
5!%08R
t0644
laytsAaWXY^
$If^gdVna
$If^gd'd$IfgdCZXY]^
Uοo]NMd$Ifgd'
$If^gdVnad$IfgdCZU=>LMNh̻yhVG5(hVnaOJQJ\^JaJ#hrhVnaCJOJQJ\^JaJhVnaCJOJQJ\^JaJ#h)hbx5CJOJQJ^JaJ hbxhbxCJOJQJ^JaJ#hVnahbx5CJOJQJ^JaJhVna5CJOJQJ^JaJ#h$Ghbx5CJOJQJ^JaJh)xI5CJOJQJ^JaJ h)hbxCJOJQJ^JaJhVnaCJOJQJ^JaJ'hbxhbxCJOJPJQJ\^JaJ!hVnaCJOJPJQJ\^JaJMN5'd$IfgdVnakd$$Iflֈ
5!%08R
t0644
laytbxk
hmsd$IfgdCZ
$If^gdVnahlmrscghlmUsddsRC6hOJQJ\^JaJhCJOJQJ\^JaJ#h)h;}5CJOJQJ^JaJh;}5CJOJQJ^JaJh;}CJOJQJ^JaJh;}OJQJ\^JaJ#hrh;}CJOJQJ\^JaJh;}CJOJQJ\^JaJ#h)hVna5CJOJQJ^JaJhVnaCJOJQJ^JaJ#h$Gh)xI5CJOJQJ^JaJhVna5CJOJQJ^JaJh)xI5CJOJQJ^JaJ5'd$Ifgd;}kd$$Iflֈ
5!%08R
t0644
laytbx3ychmd$Ifgd;}
$If^gd;}
U5'd$Ifgd;}kdb$$Iflֈ
5!%08R
t0644
laytbxUd$Ifgd;}
$If^gd;}
$If^gd L `!!!"L"P"}oaSE7Eh)xICJOJQJ^JaJhyCJOJQJ^JaJhVCJOJQJ^JaJhxCJOJQJ^JaJh$zCJOJQJ^JaJ#h$zh$zCJOJQJ\^JaJh$zCJOJQJ\^JaJ#hrh$zCJOJQJ\^JaJ#h)h5CJOJQJ^JaJ#h$Gh)xI5CJOJQJ^JaJh5CJOJQJ^JaJh)xI5CJOJQJ^JaJhCJOJQJ^JaJM5' $Ifgd$zd$Ifgd;}kd0$$Iflֈ
5!%08R
t0644
laytbx !!`!a!!!!!L"Q"V"\"""""""# #d$IfgdVd$Ifgd;} $Ifgd$zP"Q"["\""C### $$$$$%%^%_%&1'teVeDeVe6h0CJOJQJ^JaJ#hrh0CJOJQJ\^JaJhxCJOJQJ\^JaJh0CJOJQJ\^JaJ#h)h$z5CJOJQJ^JaJhxCJOJQJ^JaJh$zCJOJQJ^JaJhy5CJOJQJ^JaJhV5CJOJQJ^JaJhx5CJOJQJ^JaJ#h$Gh)xI5CJOJQJ^JaJh)xI5CJOJQJ^JaJh$z5CJOJQJ^JaJ #C#D######### $
$$d$Ifgd;}
$$$$$5'''d$Ifgd0kd$$Iflֈ
5!%08R
t0644
laytbx$$$$$$$%_%R&S&&&5':'@'d'u''d$Ifgd;} $Ifgd0 $Ifgd$zd$Ifgd01'2'4'5'9':'?'@'c'd't'u'''))Q)p)t)u)y)z))))ǸǦvhhYǦYhG#h)h-5CJOJQJ^JaJh-5CJOJQJ^JaJh-CJOJQJ^JaJh-CJOJQJ\^JaJ#h)hx5CJOJQJ^JaJh05CJOJQJ^JaJ#h$Gh)xI5CJOJQJ^JaJhx5CJOJQJ^JaJh)xI5CJOJQJ^JaJhxCJOJQJ^JaJh0CJOJQJ^JaJh)xICJOJQJ^JaJ''
(I(5' $Ifgd$zd$Ifgd0kd$$Iflֈ
5!%08R
t0644
laytbxI()p)u)z))))))d$Ifgd;} $Ifgd$z ))H**5' $Ifgd<1"d$Ifgd0kd $$Iflֈ
5!%08R
t0644
laytbx)+(+)+++++++1,2,3,4,6,7,9,:,<,=,?,@,A,L,],ĵģӑwswswswsok`N#hzWh GO5CJOJQJmHsHh'e5CJOJQJh.U}hW%hDjhDU#h{h GO5CJOJQJ^JaJ#h)h<1"5CJOJQJ^JaJ#h$Gh)xI5CJOJQJ^JaJh<1"5CJOJQJ^JaJh)xI5CJOJQJ^JaJh<1"CJOJQJ^JaJhfCJOJQJ\^JaJh<1"CJOJQJ\^JaJ*)+++++++,,1,d$Ifgd;} $Ifgd$z
1,2,3,5,6,50&$ dgd GOgd{kdh
$$Iflֈ
5!%08R
t0644
laytbx6,8,9,;,<,>,?,@,A,],,,,,,-
-- -4- $Ifgd{ $Ifgd GOgd GO$a$gd GO dgd GO],f,p,w,,,,,,,,,,,,,,,,,, -
-- -3-Ĺ叟yrjcjTLcTATAThzWh GOmHsHhW%OJQJhzWh GOOJQJmHsHh{h GOh{OJQJh'eh GOh'eOJQJhh GO5CJOJQJhh5CJH*OJQJh{5CJOJQJh5CJOJQJmHsHhfm5CJOJQJ#hzWh GO5CJOJQJmHsHh{5CJOJQJmHsHh5CJOJQJhfm5CJOJQJmHsH4-5-6-7-8-9-531/1kd6$$Iflֈ
!%0@8R
b
t0644
layt{3-5-7-8-9-:-;-X-Y-l----------ԬrdN=N!hw9hw9B*CJOJQJph*jhw9hw9B*CJOJQJUphhw9B*CJOJQJph$h$hw90J CJOJQJmHsH)h?!hw9B*CJOJQJmHphsH#hw9B*CJOJQJmHphsH,jhw9B*CJOJQJUmHphsH!h?!h GOB*CJOJQJph)h?!h GOB*CJOJQJmHphsHh.U}hW%h GOhzWh GOmHsH-----------¾¾#h{h GO5CJOJQJ^JaJhDh.U}hW%h GOhw9h GO5jhw9hw9B*CJOJQJUmHnHphu&h)xIB*CJOJQJmHnHphu
9---------gd{51h0:p GO= /!"#$%$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/yt]hS$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/yt]hS$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5yt{$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytsA$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytsA$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytsA$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#v:Vl
t065R55
55
5/ytbx$$If!vh#vR#v#v
#v#v
#vb:Vl
t065R55
55
5byt{j!666666666vvvvvvvvv66666>666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666628 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JrNormaldCJ_HaJmH sH tH DA D
Default Paragraph FontRi@R0Table Normal4
l4a(k (
0No List>@>xnf0Header
H$d..xnf0Header Char> @>xnf0Footer
H$d.!.xnf0Footer CharZ@2Z
xnf0Balloon TextdCJOJQJaJmHsHtHNoANxnf0Balloon Text CharCJOJQJ^JaJtStxnf
Table Grid7:V0d.)a.Page NumberT`rTe
v0
No Spacing$CJOJPJQJ_HaJmH sH tH ^+@^ e
v0Endnote Textd CJOJPJQJaJmHsHtHFoFe
v0Endnote Text CharOJPJQJ>*`> e
v0Endnote ReferenceH*^@^Comment Textd CJOJPJQJaJmHsHtHFoFComment Text CharOJPJQJB'`B;Comment ReferenceCJaJtOt5Colorful List - Accent 11d^CJOJPJQJaJ@@{ List Paragraph
^6U`6w90 Hyperlink>*B*phPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
% y
2`XUhP"1')],3---!$&),/47;?CEFy p1a
MU #$$'I()*1,6,4-9-- "#%'(*+-.01235689:<=>@ABDG%OdqX!@ @H 0(
0(
B
S ?KTwx )
*
SWmt
Y
]
UVlyhlcghlU]inQU}PW_`S[
I R u!y!H"S"1#:#####3$5$6$8$9$;$<$>$?$L$f$w$$$$$$$$ %
%% %3%;%X%%%U]S[
I R !!H"S"3$5$6$8$9$;$<$>$?$]$$$$$%% %
%% %3%9%%%%333333333315 & S]Y
]
hrclL[125? !!o!p!y!z!!!!!2$3$?$A$]$]$g$p$w$w$$$$$$$$5%5%7%9%X%%%%%%fr}cR 7!7n?u;GIVa@!XjOB[u8 <1"$%W%&6j&'2(\)/+=`,g1R354756\63;. ?sACr&CWFH!H)xITwJkMeN GOHYPfQ!R{xRURQ3SNGS]hS;5TU
V7WFAWYCZ\?\c\F](]:]Yd^jp_6=`Vna'e1-ejxf
$hrh/IkUm@Bmgmtm>ZnYBojoxbre
vFwbx.Wx >^'*@N$M
K{X
Zix6/_HRT56*0$M]DBeBkeoF?'f;|M!Y$z3$5$@####%0%@UnknownG*Ax Times New Roman5Symbol3.*Cx Arial7.@Calibri5..[`)Tahoma7.[ @VerdanaA$BCambria Math"qh*&'(*&'gAgA!n24!$!$3qHP ?xnf2!xxTammy SmithteacherOh+'0l
(4
@LT\dTammy SmithNormalteacher15Microsoft Office Word@G&@p~@p~@Z֯g՜.+,D՜.+,8hp
Lewis CentralA!$Title 8@_PID_HLINKSAtWGhttp://www.learningkeys.org/
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHJKLMNOPRSTUVWXYZ[\]^_`abcdeghijklmopqrstuxy|Root Entry FZ{Data
I1TableQ)WordDocument
7SummaryInformation(fDocumentSummaryInformation8nMsoDataStore
DSE4UPER==2
Item
PropertiesUCompObj
r
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q