> { ɘbjbjzz 7@0
8,DpT*S( RRRRRRR$UWZR9 R4R R RjKPg+dEM2qRR0*SwMJXXdPXP RR *S X
: Concepts and skills students master: 2. Formulate, represent, and use algorithms with multi-digit whole numbers and decimals with flexibility, accuracy, and efficiencyFluently multiply multi-digit whole numbers using standard algorithms. C
We will fluently multiply whole numbers using standard algorithms. (3 digit x 2 digit)Apple.g.; 345 x 52Multiply, whole numbers, algorithms, regroup, factor, product, find, compute, fluently, multi-digitConcepts and skills students master: 2. Formulate, represent, and use algorithms with multi-digit whole numbers and decimals with flexibility, accuracy, and efficiencyFind whole-number quotients of whole numbers.
Use strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. C
Illustrate and explain calculations by using equations, rectangular arrays, and/or area models. C
We will divide multidigit whole numbers by single digit numbers to find quotients with and without remainders.
We will explain how we got the quotient by explaining the algorithm and using illustrations such as rectangular arrays and/or models.
Analysis
Appl
125 5 = 25
25 x 5 = 125Divisor, dividend, quotient, compatible numbers, find, product, difference, show, illustrate, summarize, whole number, multiplication, array, place value, equationConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions Interpret a fraction as division of the numerator by the denominator (a/b = a b). I
We will interpret a fraction as division of the numerator by the denominator.Knowexchange.smarttech.com Fractions by Trident Media Worksdivision, numerator, denominator, interpret, product, quotient, multiply, recognizeConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions
Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers. I
We will solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers.ApplChapter 7 unit 3 Mixed numbers Scott Foresman Addison Wesley Mathematicseach, quotient,
whole number, fraction, mixed numbers, product, solve, plan, verify determine mixed numbersConcepts and skills students master: 2. Formulate, represent, and use algorithms with multi-digit whole numbers and decimals with flexibility, accuracy, and efficiency
Add, subtract, multiply, and divide decimals to hundredths.
Use concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. I
Relate strategies to a written method and explain the reasoning used. IWe will add, subtract, multiply, and divide decimals to hundredths.
We will use drawings or models to represent the addition, subtraction, multiplication, or division of decimals to the hundredths.
We will explain the different strategies/algorithms used for adding, subtracting, multiplying, and dividing decimals.
Appl
Compr
Addend, sum, difference, factor, product, quotient, decimal, divide, tenths, hundredths, illustrate, summarize, subtract, add, multiply, relateConcepts and skills students master: 2. Formulate, represent, and use algorithms with multi-digit whole numbers and decimals with flexibility, accuracy, and efficiency
Write and interpret numerical expressions.
Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. I
Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. IWe will simplify expressions using order of operations
After reading or listening to story problems, we will write numerical expressions using parentheses, brackets or braces; and then explain what each quantity represents.
We will evaluate the the numerical expressions that we have written.
Appl
Applexchange.smarttech.com Unit7 lesson 4, number sentences/parenthesesOrder of operations, parentheses, add, subtract, multiply, divide, exponents, evaluate, expressions, solve, use, explain, evaluate, brackets, braces, properties of equalityConcepts and skills students master:
3. Formulate, represent, and use algorithms to add and subtract fractions with flexibility, accuracy, and efficiencyUse equivalent fractions as a strategy to add and subtract fractions.
Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. I
Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions with like denominators. I
Solve word problems involving addition and subtraction of fractions referring to the same whole. I
We will use the benchmark fractions , , 2/3, 1/3, , 1/5, 1/10, and fraction number sense to estimate addition and subtraction of fractions.
We will add and subtract fractions with unlike denominators by converting to equivalent fractions using the LCM or the GCF.
We will find the LCM of two numbers.
We will find the GCF of two numbers.
We will simplify fractions by dividing the numerator and denominator by the GCF.
We will demonstrate the understanding that fractions are relative to the whole.
We will solve word problems with addition and subtraction of fractions
Appl
Synthesis
Appl
pg. 402 Scott Foresman-Addison Wesley Mathematics
e.g. 2/3 + 5/4 = 8/12 + 15/12 = 23/12
e.g. 2/5 + `" 3/7
of a wedding cake is not the same amount as of a cupcake.Equivalent, sum, difference, benchmark fractions, estimate, reasonable, denominator, numerator, strategy, solve, add, subtract, LCM, mixed numbers, equivalent, whole fractions, GCF
Concepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions
Interpret the product (a/b) q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a q b. In general, (a/b) (c/d) = ac/bd. IWe will explain and illustrate the process and procedures of multiplying and dividing whole numbers by fractions.Analysis
e.g. (2/3) x (4/5) = 8/15; (2/3) x 4 = 8/3Interpret, product, factor, equivalent, variable, verify, sequenceConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions
Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. I
We will demonstrate with tiles how to find the area of rectangles, using fractional side lengths.
Applexchange.smarttech.com area by B. BandsArea, formula, length, width, unit squares, multiplying, rectangles, products, equivalent, multiply, illustrate, fractional, tilingConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions
Interpret multiplication as scaling (resizing).
Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. I
Apply the principle of fraction equivalence a/b = (n a)/(n b) to the effect of multiplying a/b by 1. I
Comp
Appl
exchange.smarttech.com multiplication of fractions
exchange.smarttech.com Equivalents by T. Mitchell, Fractions by Trident Media Works Interpret, multiplication, scale, compare, product, factor, equivalence, predict, infer, identity element (multiplication property of 1)Concepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions Solve real world problems involving multiplication of fractions & mixed numbers. I
We will demonstrate the multiplication of fractions to include mixed numbers.
We will solve real world problems involving the multiplication of fractions and mixed numbers.ApplChapter 8 unit 12 and 13 Scott Foresman-Addison Wesley Mathematics
x 1 2/3
Multiply, product, fractions, mixed numbers, each, improper fraction, simplify, reduce, lowest terms, GCFConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. IWe will interpret the division of a unit fraction by a non-zero whole number.
We will determine the quotients of a unit fraction by a non-zero whole number.Appl(1/3) 4 = 1/12 because (1/12) x 4 = 1/3Inverse, quotient, whole number, quotients, compute, unit fractionConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions Interpret division of a whole number by a unit fraction, & compute such quotients. I
We will interpret the division of a whole number by a unit fraction.
We will compute the quotients of division of a whole number by a unit fraction.Comp4 (1/5) = 20 because 20 x (1/5) =4Whole number, divide, quotients, compatible numbers, find, compute, unit fractionConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions. IWe will solve real world problems involving division of unit fractions by non-zero whole numbers and the division of whole numbers by unit fractions.Apple.g.; How much chocolate will each person get if 3 people share lb. of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?Unit fraction, division, quotient, multiply, inverse, compatible numbersConcepts and skills students master: 2. Geometric figures can be described by their attributes and specific locations in the planeGraph points on the coordinate plane to solve real-world and mathematical problems. I
We will use coordinate planes to solve real world mathematical problems.Comp
Coordinate plane, ordered pair, x-value, y-value, origin, solve, plotConcepts and skills students master: 2. Geometric figures can be described by their attributes and specific locations in the plane
Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. C
We will represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane.
We will interpret coordinate values of points in the context of a given situation.Applexchange.smarttech.com area, volume, coordinatesQuadrant, coordinate plant, coordinate value, x and y-values, determine, illustrateConcepts and skills students master:
2. Geometric figures can be described by their attributes and specific locations in the planeClassify two-dimensional figures into categories based on their properties.
Explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. I
Classify two-dimensional figures in a hierarchy based on properties. I
We will explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category.
We will classify two-dimensionals figures based on properties
Comp
Comp
e.g.; all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
Example: edges, congruence, number of sides, verticestwo-dimensional, properties, attributes, categorize, parallelogram, quadralaterals, rectangles, squares, rhombus, polygons, angles, obtuse, acute, right, parallel, perpendicular, vertices, congruence,scalene, isosceles, equilateral
ROCKY FORD CURRICULUM GUIDE
SUBJECT: Math GRADE: 5TH TIMELINE: 2nd Quarter
Grade Level ExpectationEvidence OutcomeStudent-Friendly
Learning Objective%K P k
zP
Q
#$'(-.~PQa^sz)h|hz
BB*CJOJQJ^JaJph/h|hY=6B*CJOJQJ]^JaJph)h|h'BB*CJOJQJ^JaJph,h|hY=5B*CJOJQJ^JaJph,h|hY=B*CJOJQJ\^JaJph)h|hY=B*CJOJQJ^JaJph0K P _ d$Ifgd^7
&Fh$If^hgd^7$Ifgd^7 l
7,$Ifgd^7kd$$Iflֈ$ !%08 \
(
t044
laytVl
z{|d$Ifgd^7
$If^
gd^7
&F
L$If^
`Lgd^7
&Fh$If^hgd^7P
Q
)kd$$Iflֈ$ !%08 \
(
t044
laytVd$Ifgd^7
/0~d$Ifgd^7
h$If^hgd^7
&F
V$If^Vgd^77))d$Ifgd^7kdz$$Iflֈ$ !%08 \
(
t044
laytVPd$Ifgd^7
h$If^hgd^7
&F
V$If^Vgd^7PQ7,,$Ifgd^7kd7$$Iflֈ$ !%08 \
(
t044
laytV7abc^_`efghijkd$Ifgd^7 $Ifgdz
B
h$If^hgd^7
&FL$If`Lgd^7
&Fh$If^hgd^7 $Ifgd^7klmstuv $Ifgd^7d$Ifgd^77. d$Ifgd^7 $Ifgd^7kd$$Iflֈ$ !%08 \
(
t044
laytV-QRWXY\> ? !!
!!P!R!U!V!Y!Z!\!!Ӽ꼧x,h|hPkB*CJOJQJ]^JaJph/h|hPk6B*CJOJQJ]^JaJph)h|hPkB*CJOJQJ^JaJph,h|hY=5B*CJOJQJ^JaJph,h|hY=B*CJOJQJ\^JaJph)h|hY=B*CJOJQJ^JaJph+OP
&Fd$Ifgd^7
$If^gd^7
&F
L$If`Lgd^7
&Fh$If^hgd^7d$Ifgd^7L)kd$$Iflֈ$ !%08 \
(
t044
laytVd$Ifgd^7STYZ[\ij
$If^
`gd^7
$If^
gd^7
&F
L$If^
`Lgd^7
&F V$If^Vgd^7d$Ifgd^7 YZd$Ifgd^7RTz|~= > $Ifgd^7d$Ifgd^7> ? 7))d$Ifgd^7kdn$$Iflֈ$ !%08 \
(
t044
laytV!!!"o"p"J$K$L$M$U$$$s%t%&&&&&&&&&&&''''%'&'''('.'0'1'3'H'c(d(;)<)))**+++4,9,,,--һһҤһһһҤҌҌҌҌҌҌҌҌҤһһһһһҤһһҤ/h|hPk6B*CJOJQJ]^JaJph,h|hPkB*CJOJQJ]^JaJph,h|hPk5B*CJOJQJ^JaJph)h|hPkB*CJOJQJ^JaJph/h|hPk5B*CJOJQJ]^JaJph7 !!!!!!"","o"d$Ifgd^7
&F
V$If^Vgd^7
o"p"""7))d$Ifgd^7kd+$$Iflֈ$ !%08 \
(
t044
laytV"#M$N$O$P$Q$R$S$T$U$$$$$$$$$$$$s%d$Ifgd^7
&F
L$If^
`Lgd^7
&F
V$If^Vgd^7s%t%%%7))d$Ifgd^7kd$$Iflֈ$ !%08 \
(
t044
laytV%+&&&2'3'4'5':';'<'='>'?'@'E'F'G'H'}'~'''d$Ifgd^7
$If^gd^7
&F
L$If^
`Lgd^7
&F
V$If^Vgd^7'''''c(d$Ifgd^7c(d((7)d$Ifgd^7kd$$Iflֈ$ !%08 \
(
t044
laytV(?)@)))))7*8*B*C**d$Ifgd^7
h$If^hgd^7
&F
V$If^Vgd^7**4+7,$Ifgd^7kdb$$Iflֈ$ !%08 \
(
t044
laytV4++++4,9,c,,d$Ifgd^7
&F
V$If^Vgd^7,,--7,$Ifgd^7kd$$Iflֈ$ !%08 \
(
t044
laytV--....///A0F0 1!1G1111E2Q2222333445565һһҤһһxaxJxJxJxaxJxJxJ,h|hFm5B*CJOJQJ^JaJph,h|hFmB*CJOJQJ\^JaJph)h|hFmB*CJOJQJ^JaJph,*h|hPkB*CJOJQJ^JaJph,h|hPkB*CJOJQJ]^JaJph,h|hPk5B*CJOJQJ^JaJph)h|hPkB*CJOJQJ^JaJph/h|hPk5B*CJOJQJ]^JaJph------..D..d$Ifgd^7
h$If^hgd^7
&F
V$If^Vgd^7..//7,
h$If^hgd^7$Ifgd^7kd$$Iflֈ$ !%08 \
(
t044
laytV/A0F00 1d$Ifgd^7 1!117)d$Ifgd^7kd $$Iflֈ$ !%08 \
(
t044
laytV111E2J2K2L2M2N2O2P2Q2R22d$Ifgd^7
h$If^hgd^7
&FV$If^Vgd^7
22337))d$Ifgd^7kdV
$$Iflֈ$ !%08 \
(
t044
laytV333V4W444455d$Ifgd^7
h$If^hgd^7
&FV$If^Vgd^75565[557))d$Ifgd^7kd$$Iflֈ$ !%08 \
(
t044
laytV65[55778)8U8V8>9?9@9A9C9D9F9G9I9J9L9W9r9v9{9|999999꼥|qbW|q|W|hV5CJOJQJhV5CJOJQJmHsHh0g5CJOJQJ#hzWh GO5CJOJQJmHsHh'e5CJOJQJh|jh|U,h|h GO5B*CJOJQJ^JaJph,h|h&5B*CJOJQJ^JaJph,h|h&B*CJOJQJ\^JaJph)h|h&B*CJOJQJ^JaJph56666666W7X7777777777777d$Ifgd^7
h$If^hgd^7
$If^gd^7
&F:$If`:gd^7
&FV$If^Vgd^7778888888V8>9d$Ifgd^7
>9?9@9B9C972(& dgd GOgd GOkd$$Iflֈ$ !%08 \
(
t044
laytVC9E9F9H9I9K9L9h999999 '(< $Ifgd{ $Ifgd GOgd GO$a$gd GO dgd GO9999999999999'(;=?@A^_rǿ{j{SA#h+NB*CJOJQJmHphsH,jh+NB*CJOJQJUmHphsH!h?!h GOB*CJOJQJph)h?!h GOB*CJOJQJmHphsHh GOhzWh GOmHsHUhVOJQJhzWh GOOJQJmHsHh{h GOh{OJQJh'eh GOh'eOJQJhL"h GO5CJOJQJhL"hL"5CJH*OJQJhL"5CJOJQJLevel of
ThinkingResource Correlation
Academic Vocabulary
Learning Keys, 800.927.0478, HYPERLINK "http://www.learningkeys.org" www.learningkeys.org Page PAGE \* MERGEFORMAT 1
<=>?Ƙǘ531/1kd$$Iflֈ$ !%0@8 \
t0644
laytVrØĘŘƘǘȘyeJC?;h|h GOh+Nh GO5jh+Nh+NB*CJOJQJUmHnHphu&hDTB*CJOJQJmHnHphu!h+Nh+NB*CJOJQJph*jh+Nh+NB*CJOJQJUphh+NB*CJOJQJph$h\eWh+N0JCJOJQJmHsH,jh+NB*CJOJQJUmHphsH#h+NB*CJOJQJmHphsH)h?!h+NB*CJOJQJmHphsHǘȘɘgd GOȘɘ,h|h GO5B*CJOJQJ^JaJph51h0:p GO= /!"#$%$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v(:Vl
t05 5\
5
55
5(ytV$$If!vh#v #v\
#v
#v#v
#v:Vl
t065 5\
5
55
5ytVj 666666666vvvvvvvvv66666>666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666628 0@P`p2 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JrNormaldCJ_HaJmH sH tH DA D
Default Paragraph FontRi@R0Table Normal4
l4a(k (
0No List>@>xnf0Header
H$d..xnf0Header Char> @>xnf0Footer
H$d.!.xnf0Footer CharZ@2Z
xnf0Balloon TextdCJOJQJaJmHsHtHNoANxnf0Balloon Text CharCJOJQJ^JaJtStxnf
Table Grid7:V0d.)a.Page NumberT`rTzi0
No Spacing$CJOJPJQJ_HaJmH sH tH ^+@^ zi0Endnote Textd CJOJPJQJaJmHsHtHFoFzi0Endnote Text CharOJPJQJ>*`> zi0Endnote ReferenceH*^@^Comment Textd CJOJPJQJaJmHsHtHFoFComment Text CharOJPJQJB'`BComment ReferenceCJaJ^@^BList Paragraphd^CJOJPJQJaJ6U`6+N0 Hyperlink>*B*phPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
1 !-659rȘɘ)0<EJNP l
Pk> o""s%%'c((*4+,--./ 11235557>9C9<ǘɘ !"#$%&'(*+,-./123456789:;=>?@ABCDFGHIMOEZgX!@ @H 0(
0(
B
S ?KO`dmr@D !!4#8#A'E'++m.y.//0%0?0@0B0C0E0F0H0I0K0L0W0r0|000000001111$1.181>1[111111]dqt&&@0B0C0E0F0H0I0K0L0h000001111#1%181<11113333op?0@0@0C0C0L0W0h0h0r0v0{0|000000000000000:1:1[1111aKl`}
z4i/
:M
ҫ?5 ,/=*t0!D2o>!v8/)#pv@@%XT"z-@yV4dL^>`LhH.^`.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.^`.^`.$ ^$ `o(.@^@`^J.^`^J.L^`L^J.^`^J.^`^J.PL^P`L^J.^`B*^Jo(ph.^`^Jo(.p^p`OJQJo(@^@`OJQJo(^`OJQJo(o^`OJQJo(^`OJQJo(^`OJQJo(oP^P`OJQJo(^`^J.p^p`^J.@L^@`L^J.^`^J.^`^J.L^`L^J.^`^J.P^P`^J. L^ `L^J.^`.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.^`^J.^`^J.pL^p`L^J.@^@`^J.^`^J.L^`L^J.^`^J.^`^J.PL^P`L^J.h^h`B*o(ph.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.8^8`^J.^`^J. L^ `L^J.^`^J.x^x`^J.HL^H`L^J.^`^J.^`^J.L^`L^J.^`^J.^`^J.pL^p`L^J.@^@`^J.^`^J.L^`L^J.^`^J.^`^J.PL^P`L^J.#DDK)$n}
<aKdz-Ze.St0!/
6A[U?d5 M
z/=yV4)#o>!v@@% N+l
| B^&@ R `
| (x0 u@ >TN0R&as<,Y
쌀B\82v . fen)V' 0g,[6)xd("u#&4&*, 1472^78218Y=W\=Bz
B'ByGGH\J+N GO$Rk.RDTgT|U#Y.I[cLd'eQeziflFm)n@ot;r?@ABCDEFGHIJKLMNOPQSTUVWXY[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F0y,dData
R1TableZ|XWordDocument
7SummaryInformation(DocumentSummaryInformation8MsoDataStore0D dg+dQ5LLYLUS3AZDPUQ==20D dg+dItem
PropertiesUCompObj
r
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q