> { 0bjbjzz 74'
8,Dp,VS(RRRRRRR$8UWZRR4SlllRlRlljQLQPk
N2R&S0VS?NJDX~DXdQDXQ8lRRlVSDX
: Concepts and skills students master: 1. Number patterns are based on operations and relationshipsGenerate two numerical patterns using given rules. C
We will create two numerical patterns using given rules.CompExample: In and out machine; table of valuesCreate, numerical patterns, explainConcepts and skills students master: 1. Number patterns are based on operations and relationshipsIdentify apparent relationships between corresponding terms. C
We will identify the numerical pattern between corresponding terems and state the rule.AnalysisCorresponding, relationships, distinguish, identifyConcepts and skills students master: 1. Number patterns are based on operations and relationshipsForm ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. I
We will form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.ApplExchange.smarttech.com Area, volume, coordinatesordered pairs, patterns, graph, coordinate plane, x axis, y axis, horizontal, vertical,negative numbers, positive numbers, origin, x and y valuesConcepts and skills students master: 1. Number patterns are based on operations and relationshipsExplain informally relationships between corresponding terms in the patterns. C
We will give examples of relationships between corresponding terms in patterns.CompRelationships, corresponding, patterns, discussConcepts and skills students master:
1. Number patterns are based on operations and relationshipsUse patterns to solve problems including those involving saving and checking accounts I
We will use patterns to solve problems including those involving saving and checking accounts.
AnalysisPatterns, saving account, checking account, relationships, solveConcepts and skills students master:
1. Number patterns are based on operations and relationshipsExplain, extend, and use patterns and relationships in solving problems, including those involving saving and checking accounts such as understanding that spending more means saving less I
We will explain, extend, and use patterns and relationships in solving problems, including those involving saving and checking accounts such as understanding that spending more means saving less.AnalysisPatterns, relationships, saving and checking accounts, summarize, utilize, compare, contrast, Concepts and skills students master:
1. The decimal number system describes place value patterns and relationships that are repeated in large and small numbers and forms the foundation for efficient algorithms.d. Convert like measurement units
within a given measurement
system.
i. Convert among different-sized
standard measurement units
within a given measurement
system.
ii. Use measurement
conversions in solving multi-
step, real world problems.We will convert measurement units within a given measurement system.
We will use measurement conversions in solving multi-step, real world problems.e.g. converting inches to feet or cups to gallons.Concepts and skills students master: 1. Properties of multiplication and addition provide the foundation for volume an attribute of solids.Model and justify the formula for volume of rectangular prisms.
Model the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes. I
Show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. I
Represent threefold whole-number products as volumes to represent the associative property of multiplication. I
We will measure the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes.
We will illustrate that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base.
We will recognize threefold whole-number products as volumes to represent the associative property of multiplication.
Eval
Comp
Compexchange.smarttech.com - area, volume, coordinates
exchange.smarttech.com area, volume, coordinates circumference, volume, surface by EhudginsVolume, rectangular prisms, construct, utilize, determine, equivalent, height, base, assosciative property, length, associative propertyConcepts and skills students master: 1. Properties of multiplication and addition provide the foundation for volume, an attribute of solids.Find volume of rectangular prisms using a variety of methods and use these techniques to solve real world and mathematical problems.
Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. I
Apply the formulas V = l w h and V = b h for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths. I
Use the additive nature of volume to find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts. I
We will calculate volumes by counting unit cubes, using cubic cm, cubic in., cubic ft. and improvised units.
We will apply the formulas V = L x W x H and V = B x H for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths.
We will use the additive nature of volume to find volumes of solid figures composed of two non-overlapping right rectangular prisms.
Appl
Appl
Appl
Exchange.smarttech.com Gardening with Science and Math by David ONeil
Example: the different els of a house or building; Quonset with another shape attached.
Volume, measure, cubic units, apply, formula, edge lengths, rectangular prisms, solid, width, height, base, cubesConcepts and skills students master: 1. Visual displays are used to interpret dataRepresent and interpret data.
Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). M
Use operations on fractions for this grade to solve problems involving information presented in line plots. M
We will create a line plot to display a data set of measurements in fractions of a unit (1/2, , 1/8).
Appl
Apple.g.; give different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equallyData, demonstrate, line plot, display, illustrate, organizeConcepts and skills students master:
2. Geometric figures can be described by their attributes and specific locations in the planec. Classify two-dimensional figures
into categories based on their
properties.
Explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. I
Classify two-dimensional figures in a hierarchy based on properties. I
We will explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category.
We will classify two-dimensionals figures based on properties
Comp
Comp
e.g.; all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
Example: edges, congruence, number of sides, verticestwo-dimensional, properties, attributes, categorize, parallelogram, quadralaterals, rectangles, squares, rhombus, polygons, angles, obtuse, acute, right, parallel, perpendicular, vertices, congruence,scalene, isosceles, equilateralConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions. IWe will solve real world problems involving division of unit fractions by non-zero whole numbers and the division of whole numbers by unit fractions.Apple.g.; How much chocolate will each person get if 3 people share lb. of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?Unit fraction, division, quotient, multiply, inverse, compatible numbersConcepts and skills students master: 4. The concepts of multiplication and division can be applied to multiply and divide fractions f. Solve real world problems
involving multiplication of
fractions & mixed numbers. I
We will demonstrate the multiplication of fractions to include mixed numbers.
We will solve real world problems involving the multiplication of fractions and mixed numbers.ApplChapter 8 unit 12 and 13 Scott Foresman-Addison Wesley Mathematics
x 1 2/3
Multiply, product, fractions, mixed numbers, each, improper fraction, simplify, reduce, lowest terms, GCFConcepts and skills students master: 1. The decimal number system describes place value patterns and relationships that are repeated in large and small numbers and forms the foundation for efficient algorithmsExplain that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.
Explain patterns in the number of zeros of the product when multiplying a number by powers of 10. I
Explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. I
Use whole-number exponents to denote powers of 10. I
We will explain decimal point placement patterns when multiplying or dividing a decimal by powers of ten.
We will use whole-number exponents to denote powers of ten.
We will use scientific notation.
100,000 = 10 x 10 x 10 x 10 x 10 =105
Pg. 17 textbook Enrichment Scott Foresman-Addison WesleyProduct, place value, exponents, powers of 10, decimal, patterns, summarize, explain, scientific notation, coeffecients
ROCKY FORD CURRICULUM GUIDE
SUBJECT: Math GRADE: 5TH TIMELINE: 4th Quarter
Grade Level ExpectationEvidence OutcomeStudent-Friendly
Learning ObjectiveLevel of
ThinkingResource Correlation
Academic Vocabulary
Learning Keys, 800.927.0478, HYPERLINK "http://www.learningkeys.org" www.learningkeys.org Page PAGE \* MERGEFORMAT 1
%a) * O %
.
c
d
FGK
L
=ꪕ~i)h
CShB*CJOJQJ^JaJph,h
CShW\=B*CJOJQJ\^JaJph)h
CShW\=B*CJOJQJ^JaJph#h(hMQ5CJOJQJ^JaJ,h
CShMQ5B*CJOJQJ^JaJph,h
CShMQB*CJOJQJ\^JaJph)h
CShMQB*CJOJQJ^JaJph(b )
h$If^hgdf]&
&FV$If^Vgdf]&d$Ifgdf]&) * 7)d$Ifgdf]&kd$$Iflֈ$ !%08
2
(
t044
layt( %
.
/
c
d$Ifgdf]&
h$If^hgdf]&
&FV$If^Vgdf]&c
d
7)d$Ifgdf]&kd$$Iflֈ$ !%08
2
(
t044
layt(
HId$Ifgdf]&
h$If^hgdf]&
&FV$If^Vgdf]&7)d$Ifgdf]&kdz$$Iflֈ$ !%08
2
(
t044
layt(M
N
d$Ifgdf]&
h$If^hgdf]&
&FV$If^Vgdf]&
7)
8$If^8gdMQd$Ifgd(kd7$$Iflֈ$ !%08
2
(
t044
layt(
d$Ifgd(
>7))d$Ifgd(kd$$Iflֈ$ !%08
2
(
t044
layt(BCDiFabd'(02ԿԿ|jS>ԿԨ|j)h
CShB*CJOJQJ^JaJph,h
CShW\=B*CJOJQJ\^JaJph#h(hW\=5CJOJQJ^JaJ)h
CShc9B*CJOJQJ^JaJph,h
CShW\=5B*CJOJQJ^JaJph,h
CShd-J5B*CJOJQJ^JaJph)h
CSh6B*CJOJQJ^JaJph)h
CShW\=B*CJOJQJ^JaJph,h
CSh5B*CJOJQJ^JaJph>Cd$Ifgd(
h$If^hgd(
&FV$If^Vgd(CDi7))d$Ifgd(kd$$Iflֈ$ !%08
2
(
t044
layt(cd(12d$Ifgd(
h$If^hgd(
&FV$If^Vgd(e7))d$Ifgd?_kdn$$Iflֈ$ !%08
2
(
t044
layt(e):T{56jkd$Ifgd?_ $Ifgd?_5jklC_
#$'(?@<kkkkkkk/h
CShI6B*CJOJQJ]^JaJph#h(hI5CJOJQJ^JaJ,h
CShI5B*CJOJQJ^JaJph)h
CShIB*CJOJQJ^JaJph#h(hD0P5CJOJQJ^JaJ,h
CShD0P5B*CJOJQJ^JaJph)h
CShD0PB*CJOJQJ^JaJph#kl:7)
&F$Ifgdf]&d$Ifgdf]&kd+$$Iflֈ$ !%08
2
(
t044
layt(:@A)*BCDEFKLMNOTUVWd$Ifgdf]& $Ifgdf]&
$If^
gdf]&
&F
$If^
`gdf]&WXYZ_d$Ifgdf]&7)
&F$Ifgdf]&d$Ifgdf]&kd$$Iflֈ$ !%08
2
(
t044
layt(ABCDENd$Ifgdf]&
$If^
gdf]&
&F
$If^
`gdf]&;<=>?@ABCDEFGHId$Ifgdf]&j)$Ifgdf]&kd$$Iflֈ$ !%08
2
(
t044
layt(d$Ifgdf]&<i !!!G":$N$$$$$%%&&&''l(m(X)Y)*****+,ԽԫԽԽԽԫԔ}ԽԫԽԽԫhQh,h
CSh:B*CJOJQJ\^JaJph)h
CSh:B*CJOJQJ^JaJph,*h
CShIB*CJOJQJ^JaJph,h
CShIB*CJOJQJ]^JaJph#h(hI5CJOJQJ^JaJ,h
CShI5B*CJOJQJ^JaJph)h
CShIB*CJOJQJ^JaJph,h
CShIB*CJOJQJ\^JaJphjY Z !!d$Ifgdf]&
h$If^hgdf]&
&F
L$If^`Lgdf]&
&F
V$If^Vgdf]&!!!H"7))d$Ifgdf]&kdb$$Iflֈ$ !%08
2
(
t044
layt(H"n"""&#'#n#o#p#q#r#s#t#u###:$;$<$=$B$C$D$d$Ifgd(
h$If^hgdf]&
$If^gdf]&
&F:$If`:gdf]& $IfgdID$E$F$G$L$M$N$$$$$$$$$%d$Ifgd(%%i&&7,
h$If^hgdf]&$Ifgdf]&kd$$Iflֈ$ !%08
2
(
t044
layt(&''#(l(d$Ifgdf]&l(m(()7) $IfgdId$Ifgdf]&kd$$Iflֈ$ !%08
2
(
t044
layt()7)\)])))**T*U*_*`**d$Ifgdf]&
h$If^hgdf]& $IfgdI**+Z,7.
&FV$If^Vgdf]& $Ifgdf]&kd $$Iflֈ$ !%08
2
(
t044
layt(,,2-3-j-k-5.F.k.l.1/2/3/4/5/7/8/:/;/=/>/@/K/f/j/o/p/x/{//Խ髙peVKpeph(5CJOJQJh(5CJOJQJmHsHh0g5CJOJQJ#hzWh GO5CJOJQJmHsHh'e5CJOJQJh
CSjh
CSU#h(h GO5CJOJQJ^JaJ#h(h:5CJOJQJ^JaJ,h
CSh:B*CJH*OJQJ^JaJph)h
CSh:B*CJOJQJ^JaJph,h
CSh:5B*CJOJQJ^JaJphZ,,,4-5-l-m---.5.6.7.8.9.:.;.<.=.>.?.@.A.B. $Ifgdf]&d$Ifgdf]&
$If^gdf]&
&FL$If^`Lgdf]&B.C.D.E.F.G.m.n.o.p.q.r.s.t.u.v.w.x.y.z.{.|..1/2/d$Ifgdf]&2/3/4/6/7/72(& dgd GOgd GOkdV
$$Iflֈ$ !%08
2
(
t044
layt(7/9/:/666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666628 0@P`p2 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JrNormaldCJ_HaJmH sH tH DA D
Default Paragraph FontRi@R0Table Normal4
l4a(k (
0No List>@>xnf0Header
H$d..xnf0Header Char> @>xnf0Footer
H$d.!.xnf0Footer CharZ@2Z
xnf0Balloon TextdCJOJQJaJmHsHtHNoANxnf0Balloon Text CharCJOJQJ^JaJtStxnf
Table Grid7:V0d.)a.Page NumberT`rTzi0
No Spacing$CJOJPJQJ_HaJmH sH tH ^+@^ zi0Endnote Textd CJOJPJQJaJmHsHtHFoFzi0Endnote Text CharOJPJQJ>*`> zi0Endnote ReferenceH*^@^Comment Textd CJOJPJQJaJmHsHtHFoFComment Text CharOJPJQJB'`BComment ReferenceCJaJ^@^BList Paragraphd^CJOJPJQJaJ6U`6g^%0 Hyperlink>*B*phPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
( <,/O000$*2<ACE) c
>Cek:Wj!H"D$%&l()*Z,B.2/7/-000 !"#%&'()+,-./013456789:;=>?@BDEZgX!@ @H 0(
0(
B
S ?
Uf tuFJLX`c>L""0"8"&&$'0'3'4'6'7'9':'<'='?'@'K'f'p'x''''''''(
((("(,(2(O((((((
28<F=!F!4'6'7'9':'<'='?'@'\'''''''((((,(0((((3333333333==Babd' ( 0 2 9:KL3'4'4'7'7'@'K'\'\'f'j'o'p'x'{'''''''''''''.(.(O((((aKl`}
z4i/
:M
ҫ?5 ,/=*t0!D2o>!v8/)#pv@@%XT"z-@yV4dL^>`LhH.^`.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.^`.^`.$ ^$ `o(.@^@`^J.^`^J.L^`L^J.^`^J.^`^J.PL^P`L^J.^`B*^Jo(ph.^`^Jo(.p^p`OJQJo(@^@`OJQJo(^`OJQJo(o^`OJQJo(^`OJQJo(^`OJQJo(oP^P`OJQJo(^`^J.p^p`^J.@L^@`L^J.^`^J.^`^J.L^`L^J.^`^J.P^P`^J. L^ `L^J.^`.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.^`^J.^`^J.pL^p`L^J.@^@`^J.^`^J.L^`L^J.^`^J.^`^J.PL^P`L^J.h^h`B*o(ph.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.8^8`^J.^`^J. L^ `L^J.^`^J.x^x`^J.HL^H`L^J.^`^J.^`^J.L^`L^J.^`^J.^`^J.pL^p`L^J.@^@`^J.^`^J.L^`L^J.^`^J.^`^J.PL^P`L^J.#DDK)$n}
<aKdz-Ze.St0!/
6A[U?d5 M
z/=yV4)#o>!v@@% N+l
| B^&@ R `
| (x0 u@ >TN0R&as<,Y
쌀B\82v . HG0g(,[6Yg^%f]&m(472/F28D;W\=\>/?t?Id-J\J GOD0Pk.R
CS|U8Y?_Ld'eziV
k)nw*tBE7GO4'6'@8(@UnknownG*Ax Times New Roman5Symbol3.*Cx Arial7.@Calibri5..[`)Tahoma;Wingdings?= *Cx Courier NewA$BCambria Math"1hj:&c'BFh[!G[!G!n24 ' '3qHP ?xnf2!xxTammy Smith
Kermit Snyderd
Oh+'0t
$0<
HT\dlTammy SmithNormalKermit Snyder21Microsoft Office Word@pT@<7@ @~[!՜.+,D՜.+,8hp
Lewis CentralG 'Title 8@_PID_HLINKSAtWGhttp://www.learningkeys.org/
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFHIJKLMNPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~Root Entry F@yuData
G1TableOXWordDocument7SummaryInformation(|DocumentSummaryInformation8CompObjr
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q