> uwt{ bjbjzz 7`W| | 88LdOPP(xxxNNNNNNN$Q4TZ O O
xx4O6xxNNNIMxz0"kK0N4O0dOKTT`MTM0 O OdOT| : 4. Solutions to equations, inequalities and systems of equations are found using a variety of toolsSolve systems of equations.
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. I
Solve systems of linear equations exactly and approximately, focusing on pairs of linear equations in two variables. C
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. C
We will define a system of two variable equations .
We will apply rules for solving systems of equations to prove that sum of one equation and a multiple of the other, produces a system with the same solutions
We will approximate and solve exactly, systems of linear equations.
We will solve systems consisting of linear and quadratic equations with 2 variables.
Comp
Apply
Apply
Holt McDougal Algebra 1
Pg. 730
Holt McDougal Algebra 1
Pg. 466
KUTA Algebra software
4. Solutions to equations, inequalities and systems of equations are found using a variety of toolse.Represent and solve equations and inequalities graphically.
Explain that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve. I
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the
solutions approximately. I
Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes. I
We will solve equalities and inequalities using a graph.
We will define the solution of equations and inequalities using a graph and explain that solution as all the points represented on the graph. Some forming a curve.
We will investigate the graphs of the equations y=f(x) and y=g(x) . We will examine the intersection of the 2 graphs and discuss why that is the solution of
both graphs.
Appl
Appl
Comp
Appl
Holt McDougal Algebra 1
Pg. 356
Holt McDougal Algebra 1
Pg. 43-66
Holt McDougal Algebra 1
Pg. 207
4. Solutions to equations, inequalities and systems of equations are found using a variety of tools
Solve quadratic equations in one variable.
Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x p)2 = q that has the same solutions. Derive the quadratic formula from this form.
Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.
Recognize when the quadratic formula gives complex solutions and write them as a bi for real numbers a and b.
We will define completing the square and use this method to transform any quadratic into a (x-p)2 = q equation.
Define what complex solutions are. Determine when the quadratic formula gives complex solutions.
We will recognize when the quadratic formula gives complex solutions and write them as a bi for real numbers a and b.
Appl
Holt McDougal Algebra 1
Pg. 644
Quadratic equation
3. Expressions can be represented in multiple, equivalent formsg. Rewrite simple rational expressions in different forms. I
We will demonstrate different forms of rational expressions to solve situations.
CompHolt McDougal Algebra 1
Pg. 780
3. Expressions can be represented in multiple, equivalent formsf. Rewrite rational expressions. C
We will rewrite expressions in several forms that demonstrate the same information.CompHolt McDougal Algebra 1
Pg. 794-800
1. The complex number system includes real numbers and imaginary numbers
c. Perform arithmetic operations with complex numbers.
Define the complex number i such that i2 = 1, and show that every complex number has the form a + bi where a and b are real numbers. I
Use the relation i2 = 1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. IWe will define complex numbers.
We will use the properties of math to perform add., sub., and multiplication of complex numbers.
Appl
Appl
Holt McDougal Algebra 2 pg. 224
Complex numbers
ROCKY FORD CURRICULUM GUIDE
SUBJECT: Algebra I GRADE: High School TIMELINE: 4th Quarter
Grade Level ExpectationEvidence OutcomeStudent-Friendly
Learning ObjectiveLevel of
ThinkingResource Correlation
Academic Vocabulary
Learning Keys, 800.927.0478, HYPERLINK "http://www.learningkeys.org" www.learningkeys.org Page PAGE \* MERGEFORMAT 1
9 : ; 2
4
5
6
57۵tttbP#hGhGCJOJQJ\^JaJ#h)hGCJOJQJ\^JaJhX-5CJOJQJ^JaJ#hhX-5CJOJQJ^JaJhX-CJOJQJ^JaJ#hrhX-5CJOJQJ^JaJ hrhX-CJOJQJ^JaJ)*hVhX-5CJOJQJ\^JaJ#*hVhX-CJOJQJ^JaJ#hrhX-CJOJQJ\^JaJd; < 6
7
k
m
QR $IfgdAR
$If^gdAR
&FL$If^`LgdX-
&FV$If^VgdX-d$IfgdAR'()*d$IfgdAR*+,-./0123456d$IfgdAR67H:)V$If^V`gdGd$IfgdARkd$$Iflr$ !%0 \
t0644
laytARj
k
./0AB}~#$d$IfgdARV$If^V`gdG
&FL$If^`LgdGAŴ}k\kK7&htht-6CJOJQJ]^JaJ htht-CJOJQJ^JaJht-CJOJQJ\^JaJ#htht-CJOJQJ\^JaJhX-#h)hG5CJOJQJ^JaJhG5CJOJQJ^JaJ#h$GhG5CJOJQJ^JaJ h)hGCJOJQJ^JaJhGCJOJQJ^JaJ#hGhGCJOJQJ\^JaJ3jhGhG0JCJH*OJQJU\^JaJ3=>?@X`ad$IfgdARabcdefghijklmnopqrstuvwxyz{|}d$IfgdAR}~d$IfgdARd$IfgdARHF8/ $Ifgdt-d$Ifgd@
kd$$Iflr$ !%0 \
t0644
laytGE-./01234d$Ifgd@
d$If^`gd@
&F$If^`gdt-
&F$If^`gdt- $Ifgd@
"#()-.fgjl~嗢tb#h)ht-5CJOJQJ^JaJ hNtrht-CJOJQJ^JaJ#hYJht-5CJOJQJ^JaJ#hSLht-CJH*OJQJ^JaJ#htht-5CJOJQJ^JaJht-CJOJQJ^JaJ#htht-CJH*OJQJ^JaJ&htht-6CJOJQJ]^JaJ htht-CJOJQJ^JaJ&
&F$If^`gdt-d$Ifgd@
d$Ifgd@
d$Ifgd@
>5'd$Ifgd@
kdr$$Iflֈ$ !%08 \
(
t09644
layt)=>xz}~89Z[űm\H7!ht-@CJOJQJ\^JaJ'htht-@CJOJQJ\^JaJ hNtrht-CJOJQJ^JaJ#hYJht-5CJOJQJ^JaJht-CJOJQJ^JaJ#htht-5CJOJQJ^JaJ#htht-6CJOJQJ^JaJ'htht-5@CJOJQJ^JaJht-$htht-@CJOJQJ^JaJ htht-CJOJQJ^JaJ#htht-CJOJQJ\^JaJ>}~d$Ifgd@
d$If^`gd@
$If^`gd@
9]H:)$If^`gd@
d$Ifgd@
kd2$$Iflr$ !&0 \
t096(44
layt@
[\]^')rĶp^J9'#h$Ght-5CJOJQJ^JaJ h)ht-CJOJQJ^JaJ'ht-ht-@CJOJQJ\^JaJ#ht-ht-CJOJQJ\^JaJ#h)ht-CJOJQJ\^JaJ hNtrht-CJOJQJ^JaJ#hYJht-5CJOJQJ^JaJ htht-CJOJQJ^JaJht-CJOJQJ^JaJ#htht-5CJOJQJ^JaJ'htht-5@CJOJQJ^JaJ*htht-5@CJOJQJ\^JaJ]^d$Ifgd@
d$If^`gd@
()5''d$Ifgd@
kd$$Iflֈ$ !&08 \
(
t09644
layt@
)`r
d$Ifgd@
&FL$If^`Lgd@
$If^`gdt-
8JUVWXZ[]^`acnͼͪodUJoJoJoh)5CJOJQJh)5CJOJQJmHsHh 5CJOJQJ#hzWh GO5CJOJQJmHsHh'e5CJOJQJh ljh lU#h)h GO5CJOJQJ^JaJ#h)ht-5CJOJQJ^JaJ h)ht-CJOJQJ^JaJ ht-ht-CJOJQJ^JaJ#h$Ght-5CJOJQJ^JaJht-5CJOJQJ^JaJ./0123456789IJKLMNOPQRSTUd$Ifgd@
UVWYZ50&$ dgd GOgd GOkd$$Iflֈ$ !&08 \
(
t09644
laytt-Z\]_`bc'0EFZ $Ifgd{ $Ifgd GOgd GO$a$gd GO dgd GO/0EFY[]^_|}ǿ}l}UC#h6666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666628 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JrNormaldCJ_HaJmH sH tH DA D
Default Paragraph FontRi@R0Table Normal4
l4a(k (
0No List>@>xnf0Header
H$d..xnf0Header Char> @>xnf0Footer
H$d.!.xnf0Footer CharZ@2Z
xnf0Balloon TextdCJOJQJaJmHsHtHNoANxnf0Balloon Text CharCJOJQJ^JaJtStxnf
Table Grid7:V0d.)a.Page NumberT`rTs
0
No Spacing$CJOJPJQJ_HaJmH sH tH ^+@^ s
0Endnote Textd CJOJPJQJaJmHsHtHFoFs
0Endnote Text CharOJPJQJ>*`> s
0Endnote ReferenceH*@@) List Paragraph
^6U`6*B*phPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
` [ #'+-/*6a}>])UZZ!"$%&()*,.%OdqX!@ @H 0(
0(
B
S ?
z{ WYZ\]_`bcn~/0DFY_|VW ..
VWcn[[|?R)p~v:o,Ru## <_o<:kaW d"jh#B$t18B?{??@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcefghijkmnopqrsvRoot Entry Fŋz0xData
11Table9TWordDocument7`SummaryInformation(dDocumentSummaryInformation8lCompObjr
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q