> { =bjbjzz 7[4VVVVVjjj8\tj7frr(6666666${8-;L6V6VV46nVV662$5i]<"366073y;^ry;4$5y;V$5\667y; : a.Solve linear equations in one variable.
i. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. I
ii. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. I
Summarize and describe distributions. (CCSS: 6.SP)
Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (CCSS: 6.SP.4)
Summarize numerical data sets in relation to their context.
(CCSS: 6.SP.5)
Report the number of observations. (CCSS: 6.SP.5a)
Describe the nature of the attribute under investigation, including how it was measured and its units of measurement. (CCSS: 6.SP.5b)
Give quantitative measures of center (meadian and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the contect in which the data were gathered. (CCSS: 6.SP.5c)
Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. (CCSS: 6.SP.5d)
____________________________
Use random sampling to draw inferences about a population. (CCSS: 7.SP) S3B3
Explain that generalizations about a population from a sample are valid only if the sample is representative of the population. ( CCSS: 7.SP.1)
Explain that random sampling tends to produce representative samples and support valid inferences. (CCSS: 7.SP.1)
Use data from a random sample to draw inferences about population with an unknown characteristic of interest. (CCSS: 7.SP.2)
Generate multiple samples (or simulated samples) of the same size to guage the variation in estimates or predictions. (CCSS: 7.SP.2)
____________________________
Summarize and describe distributions ( CCSS: 6.SP) S3B3
Use random sampling to draw inferences about a population. (CCSS: 7.SP)
Explain that generalizations about a population from a sample are valid only if the sample is representative of that population. (CCSS: 7.SP.1)
Explain that random sampling tends to produce representative samples and support valid inferences. (CCSS: 7.SP.2)
Use data from a random sample todraw inference about a population with an unknow characteristic of interest. (CCSS: 7.SP.2)
Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. (CCSS: 7.SP.2)
Find probilities of compound events using organized lists, tables, tree diagrams, and simulaton. (CCSS: 7.SP.8) S3B6
Explain that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. (CCSS: 7.SP.8a)
Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. (CCSS: 7.SP.8b)
For an event described in everyday language identify the outcomes in the sample space which compose the event. (CCSS: 7.SP.8b)
Design and use a simulation to generate frequencies for compound events. (CCSS: 7.SP.8c) (CCSS: 6.SP.5c)
Develop a probability model and use it to find probabilities of events. (CCSS: 7.SP.7) S3B6
Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (CCSS. 7.SP.7)
Develop a uniform probability model by assigning equal probability to all outcomes and use the model to determine probabilities of events. (CCSS: 7.SP.7a)
Develop a probability model (which may not be generated from a chance process. (CCSS: 7.SP.7b)
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. (CCSS: 7.SP.8) S3B7
Explain that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. (CCSS: 7.SP. 8a)
Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. (CCSS: 7.SP.8b)
For an event described in everyday language identify which compose the event. (CCSS: 7.SP.8b)
Design and use a simulation to generate frequencies for compound events. (CCSS: 7.SP.8c)
Classify two-dimensional figures into categories based on their properties. (CCSS: 5.G) S4B2
Explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of tht category. (CCSS: 5.G.3)
Classify two-dimensional figures in a hierarchy based on properties. (CCSS: 5.G.4)
Classify and identify two-dimensional figures according to attributes of line relationships or angle size. (CCSS: 4.G2) S4B2
Analyze proportional relationships and use them to solve real-world and mathematica problems. (CCSS: 7.RP) S4B3
____________________________
Compute unit rates assocated with ratios of fractions, including ratios of lengths, areas and other quantites measured in like or different units. (CCSS: 7.RP.1) S4B3
I will solve linear equations in one variable.
I will give examples of linear equations in one variable with one solution.
I will give examples of linear equations in one variable infinitely with many solutions.
I will give examples of linear equations in one variable with no solutions.
I will solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using distributive property.
I will solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions collecting like terms.
I will summarize distributions.
I will describe distributions.
I will display numerical data in plots on a number line, including dot plots.
I will display numerical data in plots on a number line, including histograms.
I will display numerical data in plots on a number line, including box plots.
I will summarize numerical data sets in relation.
I will report the number of observations.
I will describe the nature of the attribute under investigation, including how it was measured and its units of measurement.
I will give quantitative mesures of center (meandian and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the contect in which the data were gathered.
I will relate the choice of measures of center and variability to the shape of the data distributionand the context in which the data were gathered.
I will use random sampling to draw inferences about a population.
I will explain that generalizations about a population from a sample are valid only if the sample is representative of the population.
I will explain that random sampling tends to produce representative samples and support valid inferences.
I will explain that random sampling tends to support valid inferences.
I will use data from a random sample to draw inferences abut population with an unknown characteristic of interest.
I will generate multiple samples (or simulated samples) of the same size to guage the variation in predictions.
I will generate multiple samples (or simulated samples) of the same size to guage the estimates or predictions.
I will summarize and describe distributions.
I will use random sampling to draw inferences about a population.
I will explain that generalizations about a population from a sample are valid only if the sample is representative of that population.
I will explain that random sampling tends to produce representative samples and support valid inferences.
I will explain that random sampling tends to support valid inferences.
I will use data from a random sample todraw inference about a population with an unknow characteristic of interest.
I will generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates.
I will generate multiple samples (or simulated samples) of the same size to gauge the variation in predictions.
I will find probilities of compound events using organized lists.
I will find probilities of compound events using organized tables.
I will find probilities of compound events using organized tree diagrams.
I will find probilities of compound events using organized simulaton.
I will represent sample spaces for compound events using methods such as organized lists.
I will represent sample spaces for compound events using methods such as organized tables.
I will represent sample spaces for compound events using methods such as tree diagrams.
For an event described in everyday language, I will identify the outcomes in the sample space which compose the event.
I will design frequencies for compound events.
I will use a simulation to generate frequencies for compound events.
I will develop a probability model to find probabilities of events.
I will use it to find probabilities of events.
I will compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
I will develop a uniform probability model by assigning equal probability to all outcomes of events.
I will develop a uniform probability model by using the model to determine probabilities of events.
I will develop a probability model (which may not be generated from a chance process.
I will find probabilities of compound events using organized lists.
I will find probabilities of compound events using organized tables.
I will find probabilities of compound events using organized tree diagrams.
I will find probabilities of compound events using simulation.
I will explain that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
I will represent sample spaces for compound events using method such as organized lists.
I will represent sample spaces for compound events using method such as organized tables.
I will represent sample spaces for compound events using method such as organized tree diagrams.
For an event described in everyday language, I will identify which compose the event.
I will design a simulation to generate frequencies for compound events.
I will use a simulation to generate frequencies for compound events.
I will classify two-dimensional figures into categories based on their properties.
I will explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of tht category.
I will classify two-dimensional figures in a hierarchy based on properties.
I will classify and identify two-dimensional figures according to attributes of line relationships or angle size.
I will identify two-dimensional figures according to attributes of line relationships or angle size.
______________________
I will analyze proportional relationships and use to solve mathematical problems.
I will analyze proportional relationships and use them to solve mathematical problems.
____________________
I will compute unit rates assocated with ratios of fractions, including ratios of lengths, areas and other quantites measured in like units.
Compute unit rates assocated with ratios of fractions, including ratios of lengths, areas and other quantiites measured in different units
Appl
Appl
Anal
Syn
APPL
COMP
APPL
SYN
SYN
COMP
SYN
APPL
APPL
COMP
APPL
COMP
_______
_______
Holt, Rinehart, and Winston
P. 540
P. 540
P. 4, 29, 540
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
______________________
Holt, Rinehart, and Winston
Holt, Rinehart, and Winston
Infinite
Solutions
Like terms
Linear
equation
Variable
Rational
number
Coefficient
Expanding
expressions
Distributive
property
Terms
Distribution
Dot Plots
Historgrams
Box Plots
Quantitave measures
Mean
Median
Interquartile range
Absolute deviation
Representative population
Representative samples
Valid Inference
Distributions
Lists
Tables
Tree diagrams
Simulation
Tree Diagram
Organized Tables
Probability
Simulation
Compound events
Organized lists
Sample spaces
Organized tables
Tree diagrams
Two-dimensional figure
Two-dimensional figure
________________
Proportional relationships
_______________
Rates
Ratios
ROCKY FORD CURRICULUM GUIDE
SUBJECT: Math GRADE: 8 TIMELINE: 1st Quarter
Grade Level ExpectationEvidence OutcomeStudent-Friendly
Learning ObjectiveLevel of
ThinkingResource Correlation
Academic Vocabulary
Learning Keys, 800.927.0478, HYPERLINK "http://www.learningkeys.org" www.learningkeys.org Page PAGE \* MERGEFORMAT 1
+,-./: ; k m n o y ĵrcRrcCh 5CJOJQJ^JaJ h0hKCJOJQJ^JaJh=p5CJOJQJ^JaJ#h0hL5CJOJQJ^JaJh0CJOJQJ^JaJ h0hLCJOJQJ^JaJ#h0hK5CJOJQJ^JaJhK5CJOJQJ^JaJhQ{5CJOJQJ^JaJh=pCJOJQJ^JaJhKCJOJQJ^JaJ h0h=pCJOJQJ^JaJ,-./o p q r d$7$8$H$If^gdQ{d$-D7$8$H$IfM
gdeqd$7$8$H$Ifgdg
r s t u v w x y
]
m
*Z
&Fd$7$8$H$Ifgdj8d$7$8$H$If^8gdj
&Fd$7$8$H$Ifgdj
&Fd$7$8$H$Ifgd d$7$8$H$Ifgdg
y
L
M
]
l
m
>?
!"7uRS*2ַַ֦䘊yyk]]hfCJOJQJ^JaJhCJOJQJ^JaJ hp3hp3CJOJQJ^JaJh*CJOJQJ^JaJhp3CJOJQJ^JaJ h~Jhp3CJOJQJ^JaJhhQyCJOJQJ^JaJ hjhjCJOJQJ^JaJhjCJOJQJ^JaJh~JCJOJQJ^JaJh CJOJQJ^JaJ"Z
g
ntuvwxyz{|
&Fd$7$8$H$Ifgdp3d$7$8$H$Ifgdp3
&Fd$7$8$H$Ifgdp3%)*+,-./012AA
&Fd$7$8$H$Ifgdp3d$&d7$8$H$IfPgdp3d$7$8$H$Ifgdp3
&Fd$7$8$H$Ifgdp3u(lnj89:;ij䛍|k]O]h=pCJOJQJ^JaJhKCJOJQJ^JaJ h0h=pCJOJQJ^JaJ hjhp3CJOJQJ^JaJh+CJOJQJ^JaJhZCJOJQJ^JaJh]CJOJQJ^JaJhCJOJQJ^JaJ hp3hp3CJOJQJ^JaJhhQyCJOJQJ^JaJhp3CJOJQJ^JaJh7
CJOJQJ^JaJR
&Fd$7$8$H$Ifgdp3d$7$8$H$Ifgdp39R
&F d$7$8$H$Ifgdp3d$7$8$H$Ifgdp3 !"#$%&'(jklmnhd$7$8$H$If^hgdp3
&F
d$7$8$H$Ifgdp3d$&d7$8$H$IfPgdp3d$7$8$H$Ifgdp3nijklmno6789:d$&d7$8$H$IfPgdp3d$7$8$H$Ifgdp3:;jklm`abc./~d$Ifgd GOd$7$8$H$Ifgdg
+ , !!j"k"l"m"n"o"""9#:####f$g$d$&dIfPgd GOd$Ifgd GO#####o$$$$$%%)%H%%%%%G&o)w))))y+{++,,---@.A.00g1ŷŷŷn hp3h]CJOJQJ^JaJh]CJOJQJ^JaJhCJOJQJ^JaJhhQyCJOJQJ^JaJh7
CJOJQJ^JaJhfCJOJQJ^JaJhCJOJQJ^JaJ hp3h*CJOJQJ^JaJh*CJOJQJ^JaJh~JCJOJQJ^JaJ%g$$$H%I%J%K%x%y%%%G&H&&&&&s't'''S(d$&dIfPgdfd$Ifgdfd$&dIfPgd GOd$Ifgd GOS(T(U(((((')()n)o)))'*(*****.+/+x+y+z+d$Ifgd7
d$Ifgdfd$&dIfPgdfz+{+++++,,,,S-T------------A.B...d$Ifgdd$Ifgd7
...`/a///00z0{00011f1g1h1i1j1k111G2H22d$&dIfPgd]d$Ifgd]g1h1i1j1r333;4P444k5l5m5n5q5u5{555555ȷxffWF h~Jh~JCJOJQJ^JaJh~J5CJOJQJ^JaJ#h0hL5CJOJQJ^JaJh05CJOJQJ^JaJhK5CJOJQJ^JaJ#h0h05CJOJQJ^JaJhL5CJOJQJ^JaJ hKh=CJOJQJ^JaJh=CJOJQJ^JaJhZCJOJQJ^JaJh]CJOJQJ^JaJh[CJOJQJ^JaJ2223
3s333333;4<4Q444k5l5m5n5o5p5q5v5w5x5y5d$Ifgd GOd$Ifgd]y5z5{5|5}5~555555555555555555555555d$Ifgd GO5555555555555555555555555555 $Ifgd~Jd$Ifgd GO5555555555555555555555555666 666666 6!6)6.626I6K6³ѳwwwwwwhhZ5CJOJQJ^JaJhrm5CJOJQJ^JaJh5CJOJQJ^JaJhf5CJOJQJ^JaJhhQy5CJOJQJ^JaJh5CJOJQJ^JaJh[5CJOJQJ^JaJh~J5CJOJQJ^JaJ#h~Jh~J5CJOJQJ^JaJh~JCJOJQJ^JaJ(555555555555555555555555555 $Ifgd~J$&dIfPgd~J55555555555555555566666 6
666$&dIfPgd~J $Ifgd~J6
666666666666!6"6#6$6)6*6+6,6-6.6/60616263646 $Ifgd~J465666768696:6;6<6=6>6?6@6A6B6C6D6E6F6G6H6I6J6K6L6Q6R6$&dIfPgd~J $Ifgd~JK6L6Q6g6k6s6y6666666 7K7L7P7h7i7j7k7777Ҵxj[Jj8?8@8A8B8C8D8`8a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8d$Ifgdrm $IfgdhQyq8888888888888888888888888$&dIfPgdhQy $IfgdhQyd$IfgdZ888999999909192939495969@9O9P9[9\9d9r9d$Ifgd GO$&dIfPgdhQyd$IfgdZ $IfgdhQyr9s9|9}99999999999999999999999999d$Ifgd GO99999::::: :4:5:::;:B:C:W:X:k:l:m:n:o:p:q:$$Ifa$gdhQy $IfgdhQyd$Ifgd GOq:r:s:t:u:v:w:x:y:z:{:|:}:::::::::::::$$&dIfPa$gdhQy $IfgdhQy$$Ifa$gdhQy:::::::::::::::::::::::::::$&dIfPgdhQy $IfgdhQy::;;;;;#;$;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H; $IfgdhQyH;I;J;K;L;M;N;O;P;Q;R;S;T;U;a;l;|;;;;;;;;;;;;; $IfgdhQy;;;;;;;;;;;;;;;;;;;<<<4<5<6<7<8<$&dIfPgdZ $IfgdhQy;;;3<8<U<X<Y<Z<[<\<^<_<a<b<d<e<g<r<<<<<<<<<<<<teZeOtZhj5CJOJQJh05CJOJQJhj5CJOJQJmHsHhM5CJOJQJmHsHhM5CJOJQJ#hzWh GO5CJOJQJmHsHh'e5CJOJQJhNjhNUhxnfh GO5CJ#hS
h25CJOJQJ^JaJ hhQyhrmCJOJQJ^JaJhrmCJOJQJ^JaJhZCJOJQJ^JaJ8<H<N<U<V<W<X<Y< $IfgdhQyY<Z<[<]<^<50&$ dgd GOgd GOkd$$Iflֈ$ !D%0P8 \
8@
t0644
layt0^<`<a<c<d<f<g<<<<<
==&=/=D=E=Y= $Ifgd{ $Ifgd GOgd GO$a$gd GO dgd GO<<<<<<<<<====.=/=D=E=X=Z=\=]=^={=|====ǿ}l}UC}C#h6LB*CJOJQJmHphsH,jh6LB*CJOJQJUmHphsH!h?!h6LB*CJOJQJph)h?!h6LB*CJOJQJmHphsHh GOhzWh GOmHsHh0OJQJhzWh GOOJQJmHsHh{h GOh{OJQJh'eh GOh'eOJQJhLh GO5CJOJQJhLhL5CJH*OJQJhL5CJOJQJY=Z=[=\==531,gd6Lkd$$Iflֈ$ !D%08 \
8@
t0644
layt0===============Ȳrkgc_Uhxnfh GO5CJhNh
h6LhSh6L5jhSh6LB*CJOJQJUmHnHphu&hB*CJOJQJmHnHphu!hSh6LB*CJOJQJph*jhSh6LB*CJOJQJUphh6LB*CJOJQJph$hWh6L0JCJOJQJmHsH,jh6LB*CJOJQJUmHphsH=====gd GO51h0:p GO= /!"#$%$$If!vh#v #v\
#v
#v8#v@#v:Vl
t065 5\
5
585@5yt0$$If!vh#v #v\
#v
#v8#v@#v:Vl
t065 5\
5
585@5yt0j666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JrNormaldCJ_HaJmH sH tH DA D
Default Paragraph FontRi@R0Table Normal4
l4a(k (
0No List>@>xnf0Header
H$d..xnf0Header Char> @>xnf0Footer
H$d.!.xnf0Footer CharZ@2Z
xnf0Balloon TextdCJOJQJaJmHsHtHNoANxnf0Balloon Text CharCJOJQJ^JaJtStxnf
Table Grid7:V0d.)a.Page Number6U`q66L0 Hyperlink>*B*phPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
5 y g15K67;<=="%,15:CPTVr Zn:g$S(z+.2y5555646R6|66667R7j778<8q88r99q:::H;;8<Y<^<Y=== !#$&'()*+-./02346789;<=>?@ABDEFGHIJKLMNOQRSUW J_lX!@ @H 0(
0(
B
S ?PW '27C I o u 7
B
?J+:$)"(NTa l 4!?!c!l!7*:*k,t,,,,,C-M-q-u-----22 2*2Z4[4]4^4`4a4c4d4f4g4r4444445555.5/5C5E5X5^5f5m5{55555Z4[4555f)g)i)i)...(.....I.J.L.P.].].C0D00000000035333Z4[4g4r444444444444444444555Z5Z5\55555
>g8#=O9b*hCifIKT&^R&ư P` nt"Ml(zsLidH80^8`0o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.^`o(.
p^p`hH.
@L^@`LhH.
^`hH.
^`hH.
L^`LhH.
^`hH.
P^P`hH.
L^ `LhH.80^8`0o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.^`o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.^`o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.80^8`0o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.80^8`0o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.80^8`0o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.80^8`0o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.80^8`0o(.
^`hH.
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.
CfIK=O9g8>(z^Rid P`"Ml
Fv
$p xc W b & QP.6^itMNS
7
Zp3=%Br%*i*\+/H/24y9Cx<Z@)2DOEJL GO&R;R[0\[e'ehi&kn\mhQy`8z(~-rmK~Jeq+g
X5qxEjWQ{*{0=pr6L
]:39|j
Zf)||* iHNj>q{]@[4]4@5@UnknownG*Ax Times New Roman5Symbol3.*Cx Arial7.@Calibri5..[`)TahomaA$BCambria Math"1hLL&,_,_!n4A4A42qHP ?xnf2!xxTammy Smithhspere4
Oh+'00x
(Tammy SmithNormalhspere2Microsoft Office Word@@Έ@si]@si],՜.+,D՜.+,8hp
Lewis Central_A4Title 8@_PID_HLINKSAtWGhttp://www.learningkeys.org/
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXZ[\]^_`bcdefghijklmnopqrstuvwxyz{|}~Root Entry Fi]Data
Y1Tablea;WordDocument
7SummaryInformation(DocumentSummaryInformation8MsoDataStore`ki]i]SGO4HMHOPW==2`ki]i]Item
PropertiesUCompObj
r
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q