1985 AP Calculus AB: Section I

90 Minutes-No Calculator

Notes: (1) In this examination, $\ln x$ denotes the natural logarithm of x (that is, logarithm to the base e).
(2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

1. $\int_{1}^{2} x^{-3} d x=$
(A) $-\frac{7}{8}$
(B) $-\frac{3}{4}$
(C) $\frac{15}{64}$
(D) $\frac{3}{8}$
(E) $\frac{15}{16}$
2. If $f(x)=(2 x+1)^{4}$, then the 4 th derivative of $f(x)$ at $x=0$ is
(A) 0
(B) 24
(C) 48
(D) 240
(E) 384
3. If $y=\frac{3}{4+x^{2}}$, then $\frac{d y}{d x}=$
(A) $\frac{-6 x}{\left(4+x^{2}\right)^{2}}$
(B) $\frac{3 x}{\left(4+x^{2}\right)^{2}}$
(C) $\frac{6 x}{\left(4+x^{2}\right)^{2}}$
(D) $\frac{-3}{\left(4+x^{2}\right)^{2}}$
(E) $\frac{3}{2 x}$
4. If $\frac{d y}{d x}=\cos (2 x)$, then $y=$
(A) $-\frac{1}{2} \cos (2 x)+C$
(B) $-\frac{1}{2} \cos ^{2}(2 x)+C$
(C) $\frac{1}{2} \sin (2 x)+C$
(D) $\frac{1}{2} \sin ^{2}(2 x)+C$
(E) $-\frac{1}{2} \sin (2 x)+C$
5. $\lim _{n \rightarrow \infty} \frac{4 n^{2}}{n^{2}+10,000 n}$ is
(A) 0
(B) $\frac{1}{2,500}$
(C) 1
(D) 4
(E) nonexistent

1985 AP Calculus AB: Section I

6. If $f(x)=x$, then $f^{\prime}(5)=$
(A) 0
(B) $\frac{1}{5}$
(C) 1
(D) 5
(E) $\frac{25}{2}$
7. Which of the following is equal to $\ln 4$?
(A) $\ln 3+\ln 1$
(B) $\frac{\ln 8}{\ln 2}$
(C) $\int_{1}^{4} e^{t} d t$
(D) $\int_{1}^{4} \ln x d x$
(E) $\int_{1}^{4} \frac{1}{t} d t$
8. The slope of the line tangent to the graph of $y=\ln \left(\frac{x}{2}\right)$ at $x=4$ is
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1
(E) 4
9. If $\int_{-1}^{1} e^{-x^{2}} d x=k$, then $\int_{-1}^{0} e^{-x^{2}} d x=$
(A) $-2 k$
(B) $-k$
(C) $-\frac{k}{2}$
(D) $\frac{k}{2}$
(E) $2 k$
10. If $y=10^{\left(x^{2}-1\right)}$, then $\frac{d y}{d x}=$
(A) $\quad(\ln 10) 10^{\left(x^{2}-1\right)}$
(B) $\quad(2 x) 10^{\left(x^{2}-1\right)}$
(C) $\left(x^{2}-1\right) 10^{\left(x^{2}-2\right)}$
(D) $2 x(\ln 10) 10^{\left(x^{2}-1\right)}$
(E) $x^{2}(\ln 10) 10^{\left(x^{2}-1\right)}$
11. The position of a particle moving along a straight line at any time t is given by $s(t)=t^{2}+4 t+4$. What is the acceleration of the particle when $t=4$?
(A) 0
(B) 2
(C) 4
(D) 8
(E) 12
12. If $f(g(x))=\ln \left(x^{2}+4\right), f(x)=\ln \left(x^{2}\right)$, and $g(x)>0$ for all real x, then $g(x)=$
(A) $\frac{1}{\sqrt{x^{2}+4}}$
(B) $\frac{1}{x^{2}+4}$
(C) $\sqrt{x^{2}+4}$
(D) $x^{2}+4$
(E) $x+2$

1985 AP Calculus AB: Section I

13. If $x^{2}+x y+y^{3}=0$, then, in terms of x and $y, \frac{d y}{d x}=$
(A) $-\frac{2 x+y}{x+3 y^{2}}$
(B) $-\frac{x+3 y^{2}}{2 x+y}$
(C) $\frac{-2 x}{1+3 y^{2}}$
(D) $\frac{-2 x}{x+3 y^{2}}$
(E) $-\frac{2 x+y}{x+3 y^{2}-1}$
14. The velocity of a particle moving on a line at time t is $v=3 t^{\frac{1}{2}}+5 t^{\frac{3}{2}}$ meters per second. How many meters did the particle travel from $t=0$ to $t=4$?
(A) 32
(B) 40
(C) 64
(D) 80
(E) 184
15. The domain of the function defined by $f(x)=\ln \left(x^{2}-4\right)$ is the set of all real numbers x such that
(A) $|x|<2$
(B) $|x| \leq 2$
(C) $|x|>2$
(D) $|x| \geq 2$
(E) x is a real number
16. The function defined by $f(x)=x^{3}-3 x^{2}$ for all real numbers x has a relative maximum at $x=$
(A) $\quad-2$
(B) 0
(C) 1
(D) 2
(E) 4
17. $\int_{0}^{1} x e^{-x} d x=$
(A) $1-2 e$
(B) -1
(C) $1-2 e^{-1}$
(D) 1
(E) $2 e-1$
18. If $y=\cos ^{2} x-\sin ^{2} x$, then $y^{\prime}=$
(A) -1
(B) 0
(C) $-2 \sin (2 x)$
(D) $\quad-2(\cos x+\sin x)$
(E) $2(\cos x-\sin x)$
19. If $f\left(x_{1}\right)+f\left(x_{2}\right)=f\left(x_{1}+x_{2}\right)$ for all real numbers x_{1} and x_{2}, which of the following could define f ?
(A) $f(x)=x+1$
(B) $f(x)=2 x$
(C) $f(x)=\frac{1}{x}$
(D) $f(x)=e^{x}$
(E) $f(x)=x^{2}$

1985 AP Calculus AB: Section I

20. If $y=\arctan (\cos x)$, then $\frac{d y}{d x}=$
(A) $\frac{-\sin x}{1+\cos ^{2} x}$
(B) $-(\operatorname{arcsec}(\cos x))^{2} \sin x$
(C) $(\operatorname{arcsec}(\cos x))^{2}$
(D) $\frac{1}{(\arccos x)^{2}+1}$
(E) $\frac{1}{1+\cos ^{2} x}$
21. If the domain of the function f given by $f(x)=\frac{1}{1-x^{2}}$ is $\{x:|x|>1\}$, what is the range of f ?
(A) $\{x:-\infty<x<-1\}$
(B) $\{x:-\infty<x<0\}$
(C) $\{x:-\infty<x<1\}$
(D) $\{x:-1<x<\infty\}$
(E) $\{x: 0<x<\infty\}$
22. $\int_{1}^{2} \frac{x^{2}-1}{x+1} d x=$
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) $\frac{5}{2}$
(E) $\ln 3$
23. $\frac{d}{d x}\left(\frac{1}{x^{3}}-\frac{1}{x}+x^{2}\right)$ at $x=-1$ is
(A) -6
(B) -4
(C) 0
(D) 2
(E) 6
24. If $\int_{-2}^{2}\left(x^{7}+k\right) d x=16$, then $k=$
(A) $\quad-12$
(B) $\quad-4$
(C) 0
(D) 4
(E) 12
25. If $f(x)=e^{x}$, which of the following is equal to $f^{\prime}(e)$?
(A) $\lim _{h \rightarrow 0} \frac{e^{x+h}}{h}$
(B) $\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{e}}{h}$
(C) $\lim _{h \rightarrow 0} \frac{e^{e+h}-e}{h}$
(D) $\lim _{h \rightarrow 0} \frac{e^{x+h}-1}{h}$
(E) $\lim _{h \rightarrow 0} \frac{e^{e+h}-e^{e}}{h}$

1985 AP Calculus AB: Section I

26. The graph of $y^{2}=x^{2}+9$ is symmetric to which of the following?
I. The x-axis
II. The y-axis
III. The origin
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
27. $\int_{0}^{3}|x-1| d x=$
(A) 0
(B) $\frac{3}{2}$
(C) 2
(D) $\frac{5}{2}$
(E) 6
28. If the position of a particle on the x-axis at time t is $-5 t^{2}$, then the average velocity of the particle for $0 \leq t \leq 3$ is
(A) $\quad-45$
(B) -30
(C) -15
(D) -10
(E) -5
29. Which of the following functions are continuous for all real numbers x ?
I. $y=x^{\frac{2}{3}}$
II. $y=e^{x}$
III. $y=\tan x$
(A) None
(B) I only
(C) II only
(D) I and II
(E) I and III
30. $\int \tan (2 x) d x=$
(A) $\quad-2 \ln |\cos (2 x)|+C$
(B) $\quad-\frac{1}{2} \ln |\cos (2 x)|+C$
(C) $\frac{1}{2} \ln |\cos (2 x)|+C$
(D) $\quad 2 \ln |\cos (2 x)|+C$
(E) $\frac{1}{2} \sec (2 x) \tan (2 x)+C$

1985 AP Calculus AB: Section I

31. The volume of a cone of radius r and height h is given by $V=\frac{1}{3} \pi r^{2} h$. If the radius and the height both increase at a constant rate of $\frac{1}{2}$ centimeter per second, at what rate, in cubic centimeters per second, is the volume increasing when the height is 9 centimeters and the radius is 6 centimeters?
(A) $\frac{1}{2} \pi$
(B) 10π
(C) 24π
(D) 54π
(E) 108π
32. $\int_{0}^{\frac{\pi}{3}} \sin (3 x) d x=$
(A) $\quad-2$
(B) $-\frac{2}{3}$
(C) 0
(D) $\frac{2}{3}$
(E) 2

33. The graph of the derivative of f is shown in the figure above. Which of the following could be the graph of f ?
(A)

(B)

(C)

(D)

(E)

1985 AP Calculus AB: Section I

34. The area of the region in the first quadrant that is enclosed by the graphs of $y=x^{3}+8$ and $y=x+8$ is
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) 1
(E) $\frac{65}{4}$

35. The figure above shows the graph of a sine function for one complete period. Which of the following is an equation for the graph?
(A) $y=2 \sin \left(\frac{\pi}{2} x\right)$
(B) $y=\sin (\pi x)$
(C) $y=2 \sin (2 x)$
(D) $y=2 \sin (\pi x)$
(E) $y=\sin (2 x)$
36. If f is a continuous function defined for all real numbers x and if the maximum value of $f(x)$ is 5 and the minimum value of $f(x)$ is -7 , then which of the following must be true?
I. The maximum value of $f(|x|)$ is 5 .
II. The maximum value of $|f(x)|$ is 7 .
III. The minimum value of $f(|x|)$ is 0 .
(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II, and III
37. $\lim _{x \rightarrow 0}(x \csc x)$ is
(A) $-\infty$
(B) -1
(C) 0
(D) 1
(E) ∞

1985 AP Calculus AB: Section I

38. Let f and g have continuous first and second derivatives everywhere. If $f(x) \leq g(x)$ for all real x, which of the following must be true?
I. $f^{\prime}(x) \leq g^{\prime}(x)$ for all real x
II. $f^{\prime \prime}(x) \leq g^{\prime \prime}(x)$ for all real x
III. $\int_{0}^{1} f(x) d x \leq \int_{0}^{1} g(x) d x$
(A) None
(B) I only
(C) III only
(D) I and II only
(E) I, II, and III
39. If $f(x)=\frac{\ln x}{x}$, for all $x>0$, which of the following is true?
(A) f is increasing for all x greater than 0 .
(B) f is increasing for all x greater than 1.
(C) f is decreasing for all x between 0 and 1 .
(D) f is decreasing for all x between 1 and e.
(E) f is decreasing for all x greater than e.
40. Let f be a continuous function on the closed interval $[0,2]$. If $2 \leq f(x) \leq 4$, then the greatest possible value of $\int_{0}^{2} f(x) d x$ is
(A) 0
(B) 2
(C) 4
(D) 8
(E) 16
41. If $\lim _{x \rightarrow a} f(x)=L$, where L is a real number, which of the following must be true?
(A) $f^{\prime}(a)$ exists.
(B) $f(x)$ is continuous at $x=a$.
(C) $f(x)$ is defined at $x=a$.
(D) $f(a)=L$
(E) None of the above

1985 AP Calculus AB: Section I

42. $\frac{d}{d x} \int_{2}^{x} \sqrt{1+t^{2}} d t=$
(A) $\frac{x}{\sqrt{1+x^{2}}}$
(B) $\sqrt{1+x^{2}}-5$
(C) $\sqrt{1+x^{2}}$
(D) $\frac{x}{\sqrt{1+x^{2}}}-\frac{1}{\sqrt{5}}$
(E) $\frac{1}{2 \sqrt{1+x^{2}}}-\frac{1}{2 \sqrt{5}}$
43. An equation of the line tangent to $y=x^{3}+3 x^{2}+2$ at its point of inflection is
(A) $y=-6 x-6$
(B) $y=-3 x+1$
(C) $y=2 x+10$
(D) $y=3 x-1$
(E) $y=4 x+1$
44. The average value of $f(x)=x^{2} \sqrt{x^{3}+1}$ on the closed interval $[0,2]$ is
(A) $\frac{26}{9}$
(B) $\frac{13}{3}$
(C) $\frac{26}{3}$
(D) 13
(E) 26
45. The region enclosed by the graph of $y=x^{2}$, the line $x=2$, and the x-axis is revolved about the y-axis. The volume of the solid generated is
(A) 8π
(B) $\frac{32}{5} \pi$
(C) $\frac{16}{3} \pi$
(D) 4π
(E) $\frac{8}{3} \pi$

1985 AB

1. D
2. E
3. A
4. C
5. D
6. C
7. E
8. B
9. D
10. D
11. B
12. C
13. A
14. D
15. C
16. B
17. C
18. C
19. B
20. A
21. B
22. A
23. B

1985 BC
24. D
25. E
26. E
27. D
28. C
29. D
30. B
31. C
32. D
33. B
34. A
35. D
36. B
37. D
38. C
39. E
40. D
41. E
42. C
43. B
44. A
45. A

1.	D	24. D
2.	A	$25 . \mathrm{C}$
3.	B	$26 . \mathrm{E}$
4.	D	$27 . \mathrm{E}$
5.	D	$28 . \mathrm{E}$
6.	E	29. D
7.	A	$30 . \mathrm{B}$
8.	C	$31 . \mathrm{D}$
9.	B	$32 . \mathrm{E}$
10.	$33 . \mathrm{C}$	
11.	$34 . \mathrm{A}$	
12.	$35 . \mathrm{B}$	
13.	$36 . \mathrm{E}$	
14.	$37 . \mathrm{A}$	
15.	$38 . \mathrm{C}$	
16.	$39 . \mathrm{A}$	
17.	$40 . \mathrm{A}$	
18.	$41 . \mathrm{C}$	
19.	$42 . \mathrm{E}$	
20.	$43 . \mathrm{E}$	
21.	$44 . \mathrm{A}$	
22.	$45 . \mathrm{D}$	
23.		

24. D
25. C
26. E
27. E
28. E
29. D
30. B
31. D
32. E
33. C
34. A
35. B
36. E
37. A
38. C
39. A
40. A
41. C
42. E
43. E
44. A
45. D

1985 Calculus AB Solutions

1. $\mathrm{D} \quad \int_{1}^{2} x^{-3} d x=-\left.\frac{1}{2} x^{-2}\right|_{1} ^{2}=-\frac{1}{2}\left(\frac{1}{4}-1\right)=\frac{3}{8}$.
2. E $f^{\prime}(x)=4(2 x+1)^{3} \cdot 2, f^{\prime \prime}(1)=4 \cdot 3(2 x+1)^{2} \cdot 2^{2}, f^{\prime \prime \prime}(1)=4 \cdot 3 \cdot 2(2 x+1)^{1} \cdot 2^{3}$,

$$
f^{(4)}(1)=4!\cdot 2^{4}=384
$$

3. A $y=3\left(4+x^{2}\right)^{-1}$ so $y^{\prime}=-3\left(4+x^{2}\right)^{-2}(2 x)=\frac{-6 x}{\left(4+x^{2}\right)^{2}}$

Or using the quotient rule directly gives $y^{\prime}=\frac{\left(4+x^{2}\right)(0)-3(2 x)}{\left(4+x^{2}\right)^{2}}=\frac{-6 x}{\left(4+x^{2}\right)^{2}}$
4. C $\int \cos (2 x) d x=\frac{1}{2} \int \cos (2 x)(2 d x)=\frac{1}{2} \sin (2 x)+C$
5. D $\lim _{n \rightarrow \infty} \frac{4 n^{2}}{n^{2}+10000 n}=\lim _{n \rightarrow \infty} \frac{4}{1+\frac{10000}{n}}=4$
6. $\mathrm{C} \quad f^{\prime}(x)=1 \Rightarrow f^{\prime}(5)=1$
7. $\mathrm{E} \quad \int_{1}^{4} \frac{1}{t} d t=\left.\ln t\right|_{1} ^{4}=\ln 4-\ln 1=\ln 4$
8. B $\quad y=\ln \left(\frac{x}{2}\right)=\ln x-\ln 2, y^{\prime}=\frac{1}{x}, y^{\prime}(4)=\frac{1}{4}$
9. D Since $e^{-x^{2}}$ is even, $\int_{-1}^{0} e^{-x^{2}} d x=\frac{1}{2} \int_{-1}^{1} e^{-x^{2}} d x=\frac{1}{2} k$
10. D $y^{\prime}=10^{\left(x^{2}-1\right)} \cdot \ln (10) \cdot \frac{d}{d x}\left(\left(x^{2}-1\right)\right)=2 x \cdot 10^{\left(x^{2}-1\right)} \cdot \ln (10)$
11. B $v(t)=2 t+4 \Rightarrow a(t)=2 \therefore a(4)=2$
12. C $f(g(x))=\ln \left(g(x)^{2}\right)=\ln \left(x^{2}+4\right) \Rightarrow g(x)=\sqrt{x^{2}+4}$

1985 Calculus AB Solutions

13. A $2 x+x \cdot y^{\prime}+y+3 y^{2} \cdot y^{\prime}=0 \Rightarrow y^{\prime}=-\frac{2 x+y}{x+3 y^{2}}$
14. $\mathrm{D} \quad$ Since $v(t) \geq 0$, distance $=\int_{0}^{4}|v(t)| d t=\int_{0}^{4}\left(3 t^{\frac{1}{2}}+5 t^{\frac{3}{2}}\right) d t=\left(2 t^{\frac{3}{2}}+2 t^{\frac{5}{2}}\right)| |_{0}^{4}=80$
15. C $x^{2}-4>0 \Rightarrow|x|>2$
16. B $f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)$ changes sign from positive to negative only at $x=0$.
17. C Use the technique of antiderivatives by parts:

$$
\begin{array}{ll}
u=x & d v=e^{-x} d x \\
d u=d x & v=-e^{-x} \\
-x e^{-x}+\int e^{-x} d x=\left.\left(-x e^{-x}-e^{-x}\right)\right|_{0} ^{1}=1-2 e^{-1}
\end{array}
$$

18. C $y=\cos ^{2} x-\sin ^{2} x=\cos 2 x, y^{\prime}=-2 \sin 2 x$
19. B Quick solution: lines through the origin have this property.

Or, $f\left(x_{1}\right)+f\left(x_{2}\right)=2 x_{1}+2 x_{2}=2\left(x_{1}+x_{2}\right)=f\left(x_{1}+x_{2}\right)$
20. A $\frac{d y}{d x}=\frac{1}{1+\cos ^{2} x} \cdot \frac{d}{d x}(\cos x)=\frac{-\sin x}{1+\cos ^{2} x}$
21. B $|x|>1 \Rightarrow x^{2}>1 \Rightarrow f(x)<0$ for all x in the domain. $\lim _{|x| \rightarrow \infty} f(x)=0 . \lim _{|x| \rightarrow 1} f(x)=-\infty$. The only option that is consistent with these statements is (B).
22. A $\int_{1}^{2} \frac{x^{2}-1}{x+1} d x=\int_{1}^{2} \frac{(x+1)(x-1)}{x+1} d x=\int_{1}^{2}(x-1) d x=\left.\frac{1}{2}(x-1)^{2}\right|_{1} ^{2}=\frac{1}{2}$
23. $\left.\mathrm{B} \quad \frac{d}{d x}\left(x^{-3}-x^{-1}+x^{2}\right)\right|_{x=-1}=\left.\left(-3 x^{-4}+x^{-2}+2 x\right)\right|_{x=-1}=-3+1-2=-4$
24. D $16=\int_{-2}^{2}\left(x^{7}+k\right) d x=\int_{-2}^{2} x^{7} d x+\int_{-2}^{2} k d x=0+(2-(-2)) k=4 k \Rightarrow k=4$

1985 Calculus AB Solutions

25. $\mathrm{E} \quad f^{\prime}(e)=\lim _{h \rightarrow 0} \frac{f(e+h)-f(e)}{h}=\lim _{h \rightarrow 0} \frac{e^{e+h}-e^{e}}{h}$
26. E I: Replace y with $(-y):(-y)^{2}=x^{2}+9 \Rightarrow y^{2}=x^{2}+9$, no change, so yes.

II: Replace x with $(-x): y^{2}=(-x)^{2}+9 \Rightarrow y^{2}=x^{2}+9$, no change, so yes.
III: Since there is symmetry with respect to both axes there is origin symmetry.
27. D The graph is a V with vertex at $x=1$. The integral gives the sum of the areas of the two triangles that the V forms with the horizontal axis for x from 0 to 3 . These triangles have areas of $1 / 2$ and 2 respectively.

28. C Let $x(t)=-5 t^{2}$ be the position at time t. Average velocity $=\frac{x(3)-x(0)}{3-0}=\frac{-45-0}{3}=-15$
29. D The tangent function is not defined at $x=\pi / 2$ so it cannot be continuous for all real numbers. Option E is the only one that includes item III. In fact, the functions in I and II are a power and an exponential function that are known to be continuous for all real numbers x.
30. B $\int \tan (2 x) d x=-\frac{1}{2} \int \frac{-2 \sin (2 x)}{\cos (2 x)} d x=-\frac{1}{2} \ln |\cos (2 x)|+C$
31. $\mathrm{C} \quad V=\frac{1}{3} \pi r^{2} h, \frac{d V}{d t}=\frac{1}{3} \pi\left(2 r h \frac{d r}{d t}+r^{2} \frac{d h}{d t}\right)=\frac{1}{3} \pi\left(2(6)(9)\left(\frac{1}{2}\right)+6^{2}\left(\frac{1}{2}\right)\right)=24 \pi$
32. $\mathrm{D} \quad \int_{0}^{\pi / 3} \sin (3 x) d x=-\left.\frac{1}{3} \cos (3 x)\right|_{0} ^{\pi / 3}=-\frac{1}{3}(\cos \pi-\cos 0)=\frac{2}{3}$
33. $\mathrm{B} \quad f^{\prime}$ changes sign from positive to negative at $x=-1$ and therefore f changes from increasing to decreasing at $x=-1$.

Or f^{\prime} changes sign from positive to negative at $x=-1$ and from negative to positive at $x=1$. Therefore f has a local maximum at $x=-1$ and a local minimum at $x=1$.
34. A $\quad \int_{0}^{1}\left((x+8)-\left(x^{3}+8\right)\right) d x=\int_{0}^{1}\left(x-x^{3}\right) d x=\left.\left(\frac{1}{2} x^{2}-\frac{1}{4} x^{4}\right)\right|_{0} ^{1}=\frac{1}{4}$

1985 Calculus AB Solutions

35. D The amplitude is 2 and the period is 2 .
$y=A \sin B x$ where $|\mathrm{A}|=$ amplitude $=2$ and $B=\frac{2 \pi}{\text { period }}=\frac{2 \pi}{2}=\pi$
36. B II is true since $|-7|=7$ will be the maximum value of $|f(x)|$. To see why I and III do not have to be true, consider the following: $f(x)=\left\{\begin{array}{ccc}5 & \text { if } & x \leq-5 \\ -x & \text { if } & -5<x<7 \\ -7 & \text { if } & x \geq 7\end{array}\right.$
For $f(|x|)$, the maximum is 0 and the minimum is -7 .
37. D $\lim _{x \rightarrow 0} x \csc x=\lim _{x \rightarrow 0} \frac{x}{\sin x}=1$
38. C To see why I and II do not have to be true consider $f(x)=\sin x$ and $g(x)=1+e^{x}$. Then $f(x) \leq g(x)$ but neither $f^{\prime}(x) \leq g^{\prime}(x)$ nor $f^{\prime \prime}(x)<g^{\prime \prime}(x)$ is true for all real values of x.

III is true, since
$f(x) \leq g(x) \Rightarrow g(x)-f(x) \geq 0 \Rightarrow \int_{0}^{1}(g(x)-f(x)) d x \geq 0 \Rightarrow \int_{0}^{1} f(x) d x \leq \int_{0}^{1} g(x) d x$
39. E $f^{\prime}(x)=\frac{1}{x} \cdot \frac{1}{x}-\frac{1}{x^{2}} \ln x=\frac{1}{x^{2}}(1-\ln x)<0$ for $x>e$. Hence f is decreasing. for $x>e$.
40. D $\int_{0}^{2} f(x) d x \leq \int_{0}^{2} 4 d x=8$
41. E Consider the function whose graph is the horizontal line $y=2$ with a hole at $x=a$. For this function $\lim _{x \rightarrow a} f(x)=2$ and none of the given statements are true.
42. C This is a direct application of the Fundamental Theorem of Calculus: $f^{\prime}(x)=\sqrt{1+x^{2}}$
43. B $y^{\prime}=3 x^{2}+6 x, y^{\prime \prime}=6 x+6=0$ for $x=-1 . y^{\prime}(-1)=-3$. Only option B has a slope of -3 .
44. A $\quad \frac{1}{2} \int_{0}^{2} x^{2}\left(x^{3}+1\right)^{1 / 2} d x=\frac{1}{2} \cdot \frac{1}{3} \int_{0}^{2}\left(x^{3}+1\right)^{1 / 2}\left(3 x^{2} d x\right)=\left.\frac{1}{6}\left(x^{3}+1\right)^{3 / 2} \cdot \frac{2}{3}\right|_{0} ^{2}=\frac{26}{9}$

1985 Calculus AB Solutions

45. A Washers: $\sum \pi\left(R^{2}-r^{2}\right) \Delta y$ where $R=2, r=x$

$$
\text { Volume }=\pi \int_{0}^{4}\left(2^{2}-x^{2}\right) d y=\pi \int_{0}^{4}(4-y) d y=\left.\pi\left(4 y-\frac{1}{2} y^{2}\right)\right|_{0} ^{4}=8 \pi
$$

